An architecture for fully reconfigurable
plug-and-play wireless sensor network testbed

Adnan Bekan*t, Mihael Mohorcic*, Justin Cinkelj$, Carolina Fortuna*
*Jozef Stefan Institute, Ljubljana, Slovenia
Email: {adnan.bekan, miha.mohorcic, carolina.fortuna} @ijs.si
T Jozef Stefan International Postgraduate School, Ljubljana, Slovenia
1 iMinds - Ghent University, Gent, Belgium.
SXLAB LLC, Ljubljana, Slovenia
Email: justin.cinkelj@xlab.si

Abstract—In this paper we propose an architecture for fully-
reconfigurable, plug-and-play wireless sensor network testbeds.
The proposed architecture is able to reconfigure and support
easy experimentation and testing of standard protocol stacks
(i.e. ulPv4 and ulPv6) as well as non-standardized clean-slate
protocol stacks (e.g. configured using RIME). The parameters of
the protocol stacks can be remotely reconfigured through an easy
to use RESTful API. Additionally, we are able to fully reconfigure
clean-slate protocol stacks at run-time. The architecture enables
easy set-up of the network - plug - by using a protocol that
automatically sets up a multi-hop network (i.e. RPL protocol) and
it enables reconfiguration and experimentation - play - by using
a simple, RESTful interaction with each node individually. The
reference implementation of the architecture uses a dual-stack
Contiki OS with the ProtoStack tool for dynamic composition of
services.

Keywords—plug-and-play; testbed; architecture; wireless; sen-
sor network; IoT; low end M2M, capillary networks

I. INTRODUCTION

Different aspects of wireless sensor networks (WSN), such
as their single and multi-hop connectivity, their energy con-
sumption and system level aspects, have been well studied
for more than a decade now. More recently, there are signals
of industrial adoption through the Internet of Things (IoT)
concept and machine type communications (MTC) paradigm.
We are seeing that WSNss are starting to play an increasingly
important role in monitoring and automatizing our cities and
houses [1]. One of the reasons why their adoption still seems
to be slow is the fact that most of the studies were theoretical,
with relatively few results verified on actual testbeds [2]. Even
though projects such as Arduino and RaspberryPi significantly
lowered the experimentation barrier, setting up and tuning
an ad-hoc network of sensors, for instance in an industrial
warehouse or production plant, is still a challenging and time
consuming task.

Typical WSN deployments can be found in research insti-
tutions and consist of few tens to few hundreds of low cost,
low-power devices with limited communication capabilities.
These are typically centrally controlled and have a two or
three-tier architecture [3]. The two-tier architecture comprises
WSN devices (tierl) and the wired backbone to the server
(tier2). WSN devices are organized in a flat architecture in

(©2015 IEEE

this case. The three-tier architecture includes an additional
gateway tier that enables a hierarchical WSN architecture.
The three-tier architectures tend to be less energy efficient as
the middle tier contains a significant number of high-power
devices. Examples of two-tier sensor network deployment is
MIRAGE from Intel Berkeley and of three-tier are WISBED,
TWIST and SmartSantander.

These deployments are controlled and managed through a
wired management network and are mostly used for experi-
mental research on wireless protocols. A number of more re-
cent sensor deployments and testbeds such as SmartSantander
[1], CitySense [4] and LOG-a-TEC [5] are located outdoor.
To reduce the deployment costs, outdoor testbeds typically
use a wireless management network [3]. More recently, a
trend towards mobile wireless sensor network testbeds such
as MOTEL, CONET-IT and RoombaNet can be noticed [6].
Obviously, due to mobility, these testbeds are also controlled
through a wireless management network.

Independent of their architecture, type of management
network or degree of mobility, the deployments dedicated to
sensor data collection such as IoT-Lab [7], WISEBED [8] and
SmartSantander provide RESTful [9] interfaces through which
the data is collected. The deployments dedicated to experimen-
tal research and development of new wireless technologies, e.g.
NITOS, w-iLab.t and TWIST, provide non-RESTful interfaces
such as direct ssh access to each node.

In this paper we take a natural next step and propose an
architecture for a single-tier plug-and-play testbed for experi-
mental research and development that can be (i) deployed on
an ad-hoc basis in any target environment and (ii) configured
and controlled using simple RESTful APIs. The proposed
architecture is able to reconfigure and support easy experimen-
tation and testing of standard protocol stacks (i.e. ulPv4 and
ulPv6) as well as non-standardized clean-slate protocol stacks
(e.g. configured using Rime). The parameters of the protocol
stacks can be remotely reconfigured through the RESTful
API. Additionally, we are able to fully reconfigure clean-
slate protocol stacks at run-time. The architecture enables
easy set-up of the network - plug - by using a protocol that
automatically sets up a multi-hop network (i.e. RPL protocol),
and it enables reconfiguration and experimentation - play -
by using RESTful interactions with each particular node. We
also provide a reference implementation of the architecture, the

To be published in the proceedings of IEEE GLOBECOM 2015 - Global Communications Conference (GLOBECOM). Copyright

IEEE GLOBECOM 2015 http://globecom2015.ieee-globecom.org/

validation of its functionality and an evaluation in terms of the
size and deployment time or experimental functionalities.

The main advantage of the proposed architecture is that it
enables (i) an ad-hoc deployment of a network of sensors and
(ii) custom configuration of the wireless solution in the actual
target production environment rather than in a simulator or a
lab. This implies that, with the proposed architecture it be-
comes much easier than before to develop an M2M/MTC/IoT
solution, thus fueling innovation potential. Recent market
developments show that custom, non-standardized solutions
such as the ultra-narrow band, extremely simple lightweight
wireless solutions (e.g. SigFox) can scale better and faster than
well investigated and standardized technologies.

The paper is structured as follows. Section II discusses
challenges for building a custom WSN network with optimal
configuration in industrial or building automation environment.
Section III introduces a set of requirements for the plug-and-
play experimental WSN testbed, while Section IV describes the
proposed architecture of such an experimental testbed. Section
V describes the reference implementation of the architecture
while Section VI details the implemented enablers and proce-
dures for monitoring and control. The validation and evaluation
of the reference implementation are provided in Section VII.
Finally, Section VIII concludes the paper.

II. CHALLENGES

The adoption of IoT/M2M in application areas such as
industry and building automation could be significantly faster
if a cost-effective way of deploying reliable wireless commu-
nication networks was available. Current off-the shelf solutions
tend to be unreliable while custom built solutions by profes-
sionals require significant investment costs in infrastructure.
The design of a new wireless sensor network with optimal con-
figuration for industrial or building automation environments
has to consider a set of challenges outlined in the following.

1) Resource-aware experimentation: The first challenge
regards the WSN devices which are typically small in size
and cheap. This leads to a series of limitations such as limited
memory, lower processing power and short battery lifetime.
Given these constraints, the first main challenge is designing an
architecture that enables experimentation with as low overhead
as possible. This translates into being able to control, debug
and reconfigure the network under test using as few bits sent
over the air as possible since it is known that the wireless
interface consumes most of the energy of such devices [10].
Additionally, the time required for configuring an experiment
should be reasonable. Therefore, besides minimizing the bits
transferred over the air, the architecture should also reduce
complex operations such as large and slow memory relocations
on the embedded device itself whenever possible.

2) Context-aware deployment and configuration: The sec-
ond challenge regards the target deployment of the exper-
imental ad-hoc network. In power plants, warehouses or
buildings, there are two main factors that affect the wireless
connectivity, (i) the pre-existing wireless infrastructure and (ii)
varying set-ups consisting of moving obstacles (e.g. people,
furniture, merchandise) that lead to significant variations in
multi-path propagation. Assuming these constraints are given
before setting up the testbed, it must be possible to determine,

for instance via spectrum sensing, the occupied bands and
channels as well as the feasible location for deploying the
sensors and the distance between them. Then, the deployed
network has to be configured accordingly not to interfere
with the existing wireless infrastructure and ensure that the
chosen frequency band allows working connections (i.e large
distance at low frequency vs. small distance at possibly higher
frequency).

3) Remote control and optimization: After deploying the
testbed and appropriately configuring it on the spot, it should
be possible to assess the functioning and reliability of the
resulting system over a pre-defined period of time (e.g. few
days). A cost efficient way of realizing this is to support remote
control and optimization through an easy to use APIL. As the
system is still under test and in most cases it does not need to
be immediately integrated with the company’s legacy systems,
the simplest way of realizing this is to allow remote control
over the web and exposing an easy to use RESTful API. This
lowers the skill level required to write scripts for visualization,
monitoring and configuring the testbed remotely compared to
the traditional command line approaches.

III. REQUIREMENTS

Following the challenges identified in Section II, we can
identify a set of common requirements and design goals for
the plug-and-play testbed architecture. By addressing these
requirements, the resulting testbed architecture should lower
the development and experimental evaluation of custom-built
wireless solutions in challenging environments such as indus-
trial and building automation and thus increase the innovation
potential in wireless sensor networks enabling M2M/IoT.

A. Remote monitoring and diagnosis

The first important requirement from the architecture for an
ad-hoc plug-and-play testbed is to enable the remote monitor-
ing of the radio and network parameters as well as diagnosis of
the overall network. The nodes in remotely installed testbeds
have to be able to provide on request information about
their status, health and current configuration. For instance,
ping times and round-trip times might be requested each few
minutes from the remote monitoring application that assesses
the overall performance of the tuned network. Based on these
statistics, the network performance can be improved manually
or automatically. Micro controller and surrounding temperature
might be an important parameter to monitor, especially in
industrial production environments, as these affect the per-
formance and the lifetime of the nodes. An overall network
configuration such as routing or neighborhood tables as well as
current protocol configurations should be provided on demand
for performing remote diagnosis.

B. Remote parameter tuning

The second and equally important requirement from the
architecture for an ad-hoc plug-and-play testbed is to enable
the remote tuning of parameters. These parameters can be
grouped into (i) transceiver parameters such as transmit power,
operating frequency and operating bandwidth, and (ii) protocol
parameters such as contention window size for CSMA, time
to live value for IP or the ceiling of the exponential back-off

To be published in the proceedings of IEEE GLOBECOM 2015 - Global Communications Conference (GLOBECOM). Copyright

IEEE GLOBECOM 2015 http://globecom2015.ieee-globecom.org/

in TCP. These are all important for the remote configuration
and tuning of the custom wireless solution. For instance, if
the connection between two deployed nodes proves to be
systematically unreliable, perhaps the transmit power has to be
increased or the transmit channel changed. After applying the
changes, the behavior of new configuration can be re-evaluated.

Remote parameter tuning can be performed at run-time
or by rebooting the corresponding node so that the changes
take effect. For the sake of experimentation speed, run-time
reconfiguration should be supported for as many parameters
as possible. This is also convenient for advanced algorithm
development where dynamic interference mitigation or power
allocation settings are chosen automatically because the system
can perform timely and agile changes. For instance, with
advanced power control algorithms such as the one proposed in
[11], a run-time reconfigurable system can adapt the transmit
power and thus maintain good links in dynamic environments
where transmitters and obstacles appear and disappear.

C. Over the air software updates and upgrades

The third and equally important requirement from the
architecture for an ad-hoc plug-and-play testbed is to enable
efficient over the air software updates and upgrades. Such up-
dates are useful for debugging, upgrading existing functionality
such as a protocol setup or adding new functionality [12]. In
[13], the authors identify three types of required updates by
experimental testbeds: OS/firmware upgrades, driver updates
and application updates. OS/firmware upgrades are expected
to occur when new versions of software are released or when a
major flaw is discovered and needs immediate fixing. However,
for experimental setups that require software modification,
the need for over the air programming (OTAP) might be
more frequent. In many cases, these upgrades can be achieved
using dynamic linking, thus avoiding the need for realizing a
full OS/firmware upgrade. In such cases, the file sent to the
nodes of the testbed is relatively small compared to the full
OS/firmware image. Performing a full OS/firmware upload for
each application tends to be uneconomical.

D. Modular stack reconfiguration

The fourth requirement coming from the architecture for
an ad-hoc plug-and-play testbed is to enable modular stack
reconfiguration. While the first three requirements are manda-
tory for such systems, this last requirements is only needed for
advanced users that, besides tuning and configuring protocol
parameters, intend to reconfigure the protocols that form a
stack as part of the design and development of their cus-
tom wireless solution. This can also be done via remote
reprogramming in case the protocol stack has a monolithic
implementation, however it is less energy efficient and more
time consuming due to the higher number of bits sent over the
air.

For modular implementations of protocol stacks such as
the standards based IPv4/6 implementations in PicoMESH !
or the clean-slate CRime [14], the entire protocol stack can
be reconfigured on the node provided all the modules have
been pre-installed. For instance, one can easily switch between
IPv4 and IPv6 by just changing the layer three protocol

'PicoMESH repository - https://github.com/tass-belgium/picotcp-tinyOS

implementation module while the MAC and transport layer
protocols remain the same. This requirement supports the
development of efficient communication protocols and algo-
rithms that are generic and are independent of the operating
system. Additionally, the experimental evaluation of cross-
layer [15] and cognitive networking [14] techniques can be
made much easier with such functionality.

E. Discussion

Table I presents mapping between the challenges identified
in Section II and the architecture requirements as identified in
this section. It can be seen that by supporting remote monitor-
ing and configuration as well as over the air reprogramming,
more resource aware experimentation is facilitated, particularly
because of the convenience of the final solution. Additionally,
with careful design and optimal engineering, the number of bits
sent over the air for experimentation can be reduced. Remote
control and optimization can be achieved by enabling remote
parameter tuning and software updates/upgrades.

TABLE 1. REQUIREMENTS.
l Challenges ‘ Req. A ‘ Req. B ‘ Req. C ‘ Req. D ‘
Resource-aware experimentation v’ v’ v’
Context-aware deployment and v’ v’ v’
configuration
Remote control and optimization v’ v’

IV. ARCHITECTURE

In this section, we propose an architecture that enables
a fully reconfigurable plug-and-play wireless sensor network
testbed, complies to the requirements in Section III and thus
addresses the challenges identified in Section II.

Figure 1 depicts the system architecture. The architec-
ture has to support (i) one or more configurable wireless
transceivers for experimentation and/or management, (i) a
configurable protocol stack and/or a modular and configurable
protocol stack and (iii) a monitoring, control and composi-
tion block. Additionally, there must be support for software
upgrades to address the requirements in Section III-C. The
support for software upgrades can be realized in several ways,
for instance by using custom firmware or operating system
support. This aspect has been researched in several recent
works [12] which discuss in detail about the possible designs
and their trade-offs.

Support for software
updates

Modular and
configurable
protocol stack

Configurable
protocol stack

Monitoring, control
and composition

Configurable transceiver(s)

Fig. 1. System architecture.

To be published in the proceedings of IEEE GLOBECOM 2015 - Global Communications Conference (GLOBECOM). Copyright

IEEE GLOBECOM 2015 http://globecom2015.ieee-globecom.org/

A. Configurable wireless transceivers

The configurable wireless transceiver has to support pa-
rameter reconfiguration (i.e. tx power, etc.) as discussed in
Section III-B. This means it has to be carefully selected to
be closer to a white-box transceiver that can be reconfigured
and can support a large variety of protocol stacks rather than
to a black-box one where the transceiver and the protocol
stack are tightly integrated and prevent configurations. In some
cases, having one single transceiver may be sufficient. This
implies that the management network (i.e. the network that
performs monitoring, parameter tuning, etc.) is the same as
the experimental network (i.e. the network to be optimized
and tuned for the custom deployment). In this situation we are
dealing with in-band monitoring and configuration.

To avoid in-band management, the architecture also sup-
ports two separate transceivers. In this situation, the man-
agement and experimental networks can be clearly separated
and configured to operate on non-overlapping channels, thus
isolating the effects of the management-related communication
overhead from the target production wireless network that is
subject to customization. This is a preferable solution in most
cases, especially when the experimental stack is not fully stable
and needs remote debugging. In this case, a reprogramming
error can also compromise the management network, and the
remote access to the experimental network can be hindered, if
single transceiver was used.

Cheap and low-power transceivers tend to have limited
support for frequency range. For instance, only SRD 868
MHz or ISM 2.4 GHz, but not both at the same time are
supported by such a transceiver. In order to support both
frequency bands and also additional ones such as TVWS
(UHF, VHF-High, VHF-Low), more transceivers have to be
added to the sensor node. This offers more flexibility in
developing the solution but poses some additional hardware
and software integration challenges. The alternative is to use
more powerful software defined radios, however, for the time
being, these are more expensive and not designed for operation
with constrained devices (even though Embedded USRP is
slowly changing this). As a generic architecture, we also have
to consider the support of several interfaces to enable flexibility
in experimentation.

B. Configurable protocol stack and/or a modular and config-
urable protocol stack

An open (i.e. white-box) and configurable protocol stack
running on top a configurable transceiver is the minimal archi-
tectural support for addressing the requirements from Section
III-B. For efficiently developing and evaluating variations of
the same protocol or enabling advanced experimentation with
cross-layer and cognitive networking techniques as discussed
in Section III-D, a modular and configurable stack is desirable.
These stacks should be able to run with minimum custom
firmware as well as integrate with existing operating systems
for sensor networks. The firmware and/or operating system
should enable software upgrades as discussed in Section III-C,
thus adopting existing solutions such as discussed in [12].

In order to enable the plug part of the testbed, the stack
on which the management operations are performed (see
discussion in Section IV-A), should be able to auto-configure

the management network, thus requiring no manual work. This
makes each experimental device a directly and uniquely ad-
dressable and accessible network entity. The experimental net-
work consists of experimental devices and router/sink block.
While the experimental devices are only meant for performing
experimentation, the router/sink has two functionalities. First
one is to seamlessly integrate experimental devices into the
existing network, thus providing connection to the end-users.
The second functionality is to enable clustering of devices.
Regarding the number of routers supported by the architecture,
experimental devices can be organized with one router in flat
and with many in hierarchical architecture.

C. Monitoring, control and composition block

The monitoring, control and composition block must be
able to configure the transceivers and protocol stacks as de-
scribed in Section III. To enable the play part of the testbed, it
must provide an easy way of remotely monitoring, configuring
and composing network resources. This is typically achieved
with a simple API that follows the RESTful architecture. The
resulting network is presented in Figure 2 and is comprised
of two blocks. On the right side we have the resulting plug-
and-play testbed that is connected with the experimenters or
end-user block over the wired or wireless backbone link on
the left side.

WSN experimental testbed (WSN tier)

Wired/ /
wireless I
Backbone N O
7
Router
(sink) | N O/ <
| s/

Experimental WSN
devices

Fig. 2.

System topology.

V. REFERENCE IMPLEMENTATION

The proposed reference implementation builds on our
previous experience with outdoor testbed deployment and
experimentation with spectrum sensing and cognitive radio in
the LOG-a-TEC testbed [5]. As a result, we use the VESNA
sensor platform which is a low power modular platform with
several options for transceiver selection and the Contiki OS
which is a commonly used sensor operating system that also
enables modular updates rather than just monolithic updates.

a) Configurable transceiver selection: For our imple-
mentation we chose to use two transceivers. First, we use the
TI CC1101 (868 MHz) for the experimental network. This is
an open and reconfigurable transceiver with a very minimal
implementation on basic MAC functionalities that complies
with the architectural specification in Section IV-A. Second, we
use the AT86RF231 (2.4 GHz) for the management network.
This is an IEEE 802.14.5 compatible transceiver suitable for
low power 6LoWPAN [16] networks.

To be published in the proceedings of IEEE GLOBECOM 2015 - Global Communications Conference (GLOBECOM). Copyright

IEEE GLOBECOM 2015 http://globecom2015.ieee-globecom.org/

b) Configurable protocol stack and/or a modular and
configurable protocol stack: For the experimental network we
use the fully modular and reconfigurable CRime stack [14]
while for the management network we use Contiki’s 6Low-
PAN/IPv6 stack with RPL. This complies with the architectural
specifications in Section IV-B. The RPL protocol is used for
automatic management network discovery and configuration.
To enable two protocol stacks running in parallel, we used our
previous dual-stack Contiki adaptation [13]. The resulting im-
plementation uses Atmel RF231 radio for ulP communication,
and TI CC1101 for CRime communication. Both networks can
be operated simultaneously without interfering with each other
as they operate at different frequencies.

c) Monitoring, control and composition block: The
management network enables monitoring, controlling and
composing network functionality by using the CoAP proto-
col on top of UDP/IPv6/6LoWPAN. CoAP includes several
HTTP functionalities re-designed for constrained devices such
as WSN devices and it is built on top of User Datagram
Protocol (UDP)[17]. Therefore it has smaller overhead and
enables multicast group communication. To support all the
required monitoring, control and composition functionality,
we developed a set of CoAP handlers that enable wireless
experimenters to remotely play with the testbed. These are
detailed in Section VI

To provide remote testbed access from the Internet, we
adopted a very lightweight approach. In our implementation
the router depicted in Figure 2 shares a small part of the
address space of the wide-area network. WSN router only
forwards datagrams on the network layer, provides the Internet
connectivity and does not include any gateway functionality.
For making each experimental device directly addressable and
to avoid the problem with lack of IPv4 address space, we used
IPv6 with 6LoWPAN optimization. The alternative would be
to use an application layer gateway such as used in ZigBee, Z-
Wave, Xbee, etc. architectures [18]. However, these gateways
are complex to design and manage, and would introduce an
additional tier in the system architecture.

VI. ENABLERS AND PROCEDURES FOR MONITORING,
CONTROL AND COMPOSITION

All the enablers for monitoring, control and composition
are implemented as CoAP handlers and developed using
RESTHful principles. This section describes the procedures that
use these handlers to address the requirements in Section III.

A. Remote monitoring and diagnosis

Figure 3 presents a sequence diagram that uses CoAP
handlers for remote monitoring and diagnosis to perform
device hardware and experiment monitoring. First, the
/hardware/status is used to receive transceiver configuration
setup such as current channel, transmit power, sampling rate,
etc. Then the node sends the settings to the user. Second, after
the experiment is stared, /crime/stack_push is used to re-
ceive periodic status messages of the running experiment con-
taining the values of LQI and RSSI of the last received packet.
Then, after the completion of the experiment, /crime/get_prr
is used to retrieve PRR of the overall experiment. The node
then sends this data to the user. As the last event, using the

/crime/get_results, the experimenter will retrieve the logged

results (RSSI, LQI), stored on the SD card. The node will send

the data to the user in chunks if the size of the data exceeds

the maximum size of a packet payload.
[User (client)‘

Node (server)

Get hardware
configuration

Observe experiment OBS: forime/stack ﬂ
(PR [status msg, RSSLLQN ________

Retreive PRR statistic GET: /crime/get_prr ﬂ
leooooo_____ACK/JIPRR] ___________ Read data

Get RSSI and LQI GET: /crime/get_results from SD_card
results ACK, [data]
le—m oo O

Fig. 3. Remote monitoring.

B. Remote parameter tuning

For remote parameter tuning we implemented several
CoAP handlers. Figure 4 presents a sequence diagram that
uses two of them to adjust the channel and transmission
power of transceivers. First, the /ti_cc/set_power is used
with the desired power level as a parameter. The experimenter
(script) sends it to the target node which acknowledges the
request. Then, the /ti_cc/set_chn is sent with a numeric value
specifying the desired channel. The node acknowledges also
this request. Third and last, using the /ti_cc/restart handler
triggers the reboot of the transceiver. After the reboot, the new
values, which have been written in the appropriate registries
by the routines called by the CoAP handlers, take effect, thus
appropriately configuring the transceiver.

In our implementation, several parameter tuning handlers
have also been developed for the management network. Instead
of referring to the TI transceiver, the requests refer to the Atmel
transceiver. This is implemented in a RESTful architecture by
changing /ti/ into /atmel/ in the CoAP request.

User (client) \’Node (server)i

e
|

ml |

Set power PUT: /transciever/set_power, [value] ']
DA ACK, [responsemsg] |

Set channel PUT: /transciever/set_chn, [value] N :

e o ACK, [responsemsg] |]

Transciever GET: /transciever/restart ‘]
restart P ACK, fresponsemse] _______ |

Fig. 4. Remote configuration of channel and transmission power.

C. Over the air software updates and upgrades

Figure 5 presents a sequence diagram that uses CoAP
handlers for over the air software updates and upgrades to
perform full operating system (OS) update, and Figure 6
presents a sequence diagram that uses the same CoAP handlers
for driver and application updates.

First, in Figure 5, the /firmware/card_format is
used if users want to wipe any existing data from the
SD card. The node acknowledges this request. Second, the

To be published in the proceedings of IEEE GLOBECOM 2015 - Global Communications Conference (GLOBECOM). Copyright

IEEE GLOBECOM 2015 http://globecom2015.ieee-globecom.org/

/ firmware/header is used to upload a new OS image meta-
data such as size and CRC32 of the image and slot ID where
image will be stored on the card. The node also acknowledges
this request. Third, the / firmware/upload is used to upload
the new OS image. The node acknowledges each transferred
chunk of data. Forth, the /fimware/card_slot is used to
select the memory slot of the SD card from which the new OS
image has to be loaded. The node will also acknowledge this
request. And fifth, the /firmware/reboot is used to reboot
the device and start the loading process of the OS image from
the SD card into the flash.

User (client) Node (server)‘
— 7 {)

Format SD card A GET: /firmware/card_format

ACK, [response msg.]

Upload header file

Upload bin file of OS : are/upload, [bin file] Wiite dota
lemmmmmmem ACK, [responsemsg] _______ to SD_card

Seleet SD card slotID PUT: /firmware/card, [slotID]
ACK, [response msg.]

GET: /firmware/reboot

< o Write data
e ACK, [responsemsg] _________ «HQ(O flash

Full operating system/firmware upgrade.

Reboot the device
and load image

Fig. 5.

The first operation in Figure 6 uses the /elf/header
handler that uploads the application meta-data such as file
size, CRC32 and application name. The node acknowledges
this request. Second, the /elf/upload is used to upload
the application file. The node acknowledges each transferred
chunk of data. After the relocation is done, the node sends the
application ID. Third and forth, the /elf/start or /el f/stop
is used with application ID as parameter to start or stop the
application. The node acknowledges also these requests.

\' User (client) \ Node (server)

Upload header file

ACK, [response msg.]

Upload PUT: /elf/upload, [elf file] Write data
to flash
Relocate
oo _ACKAPPID] memory

Start icati PUT: /elf/start, [APP_ID]
ACK, [response msg.] H

PUT: /elf/header, [file_size, cre32, cfs_name] ﬂ

ACK, [response msg.]

Stop - PUT: /elf/stop, [APP_ID] ﬂ

Fig. 6. Application or drivers update.

D. Modular stack reconfiguration

Figure 7 presents a sequence diagram that uses CoAP
handlers for the modular stack reconfiguration to perform run-
time modular stack reconfiguration using JSON configuration
messages. First, the /crime/upload is used to upload the
JSON stack configuration message. The node acknowledges
successful upload. Second, the /crime/init is used to ini-
tialize the stack. The node acknowledges the request after
the stack is initialized. Third, the /crime/start handler is
used to trigger experiment with the desired sample rate and
number of packets that should be transmitted. The node also
acknowledges this request. Finally, as forth, the /crime/stop
is used to stop the running experiment.

User (client) | Node (server)|

Upload JSON file

PUT: /crime/upload, [JSON file] ﬂ

ACK, [response msg.]

Initialize stack

Start tr

Observe experiment

Fig. 7. Run-time stack reconfiguration.

VII. VALIDATION AND EVALUATION

In order to validate the introduced concept and implemen-
tation for the plug-and-play testbed we deployed 20 nodes at
the Jozef Stefan Institute campus and obtained a topology as
presented in Figure 8. In this testbed, we validated the handlers
and sequence diagrams described in Section VI to ensure the
provided functionality is as designed.

. - WSN router

. - WSN experimental
device

Fig. 8. Example deployment of the plug-and-play testbed.

Table II presents the sizes of selected files or messages
that have to be transferred over the air for reprogramming or
reconfiguring the network. For full OS reprogramming, the
total number of bytes to be sent over the air is 387,800.
If we only send a partial code update, the ELF file for
the trickle application in this case, the total transfer size is
11,316 bytes. An average message (i.e. CoAP handler) for
transceiver reconfiguration requires transferring 32 bytes while
a JSON message for reconfiguring the entire protocol stack
also amounts to transferring several thousand bytes, in this
case, 7937 bytes.

TABLE II. TRANSFER SIZE.

[Use case

transfer size [byte]]

monolithic dual stack image 387800
trickle RIME ELF app 11316
transceiver reconfiguration 32
modular stack reconfiguration 7937

The measured average data rate and packet loss in the
testbed was 27.56 kbps and 7.054 % of packets, respectively,
between the nodes that are 10-30 meters apart as the case in our
deployment. Based on these values, the second column in Table
III shows the average transfer times required for the messages

To be published in the proceedings of IEEE GLOBECOM 2015 - Global Communications Conference (GLOBECOM). Copyright

IEEE GLOBECOM 2015 http://globecom2015.ieee-globecom.org/

listed in Table II. The last column of the table presents
node local measurements of the relocation time necessary to
find the locations of unresolved function or data addresses,
function calls, code execution jumps, etc. As expected, the
results confirm that both transfer and relocation times for
software upgrades are larger than for reconfiguration messages.
Furthermore, while the transfer time for full OS update is
larger than for partial code updates, the relocation is smaller for
the first (68 sec) versus the second (239 sec). If we consider
transfer and relocation time, it can be seen that preparation
of an experiment can take from few seconds to few minutes,
depending on the complexity of the experiment which, in most
cases, is proportional to the number or required configuration
messages.

TABLE III. APPLICATION DEPLOY TIME.
[Use case [transfer time [s] | relocation time [s] |
monolithic dual stack image 109.930 68.168
trickle RIME ELF app 3.207 239.803
transceiver reconfiguration <0.1 <0.1
modular stack reconfiguration 2.249 <3.0
VIII. CONCLUSION

In this paper, we argue that an architecture for fully
reconfigurable plug-and-play wireless sensor network testbed,
suitable for fast on-site deployment, demonstration and testing
in real operating environment, can foster the adoption of
wireless sensor networks in industrial and building automation
environments. These environments pose specific challenges
that we translated to concrete requirements and design goals
that a plug-and-play testbed has to fulfill with respect to
remote operation in user-friendly way. In summary, such
testbed should be comprised of configurable transceiver(s),
configurable and possibly modular protocol stack(s), and a
monitoring, control and composition block; furthermore, it
should include support for remote software and firmware
upgrades and reconfigurations. To this end, different modes
of remote programming/configuration may be applicable to
different types of experimentation/operation, also depending
on the basic design of the sensor nodes and their capabilities.
In the reference implementation we presented the operation of
developed CoAP handlers for monitoring, control and compo-
sition. We validated and evaluated their operation in terms of
achieved average data rate, packet loss ratio and application
deployment time under different modes of supported remote
reprogramming/reconfiguration. In particular, we showed that
in some cases a trade off needs to be carefully considered
between the time needed for the transfer of a new firmware
image and the relocation time for the software upgrade.

ACKNOWLEDGMENT

The authors would like to thank all our colleagues that
contributed to this work, particularly dr. Andrej Hrovat for
generating Figure 8. This work was in part supported by the
European Commission under FP7 projects ProaSense (grant
no 612329) and CREW (grant no 258301), and in part by the
European Community from the European Social Fund under
the Operational Program Human Resources Development for
the period 2007-2013.

(1]

(2]

(31

(4]

(5]

(6]

(71

(8]

(9]

[10]

[11]

[12]

[13]

[14]

[15]

[16]

[17]

(18]

REFERENCES

L. Sanchez, V. Gutiérrez, J. A. Galache, P. Sotres, J. R. Santana,
J. Casanueva, and L. Mufioz, “Smartsantander: Experimentation and
service provision in the smart city,” in Wireless Personal Multimedia
Communications (WPMC), 2013 16th International Symposium on.
IEEE, 2013, pp. 1-6.

M. Welsh, “Sensor networks for the sciences,” Communications of the
ACM, vol. 53, no. 11, pp. 36-39, 2010.

A. Gluhak, S. Krco, M. Nati, D. Pfisterer, N. Mitton, and T. Razafind-
ralambo, “A survey on facilities for experimental internet of things
research,” Communications Magazine, IEEE, vol. 49, no. 11, 2011.

J. Bers, A. Gosain, I. Rose, and M. Welsh, “Citysense: The design and
performance of an urban wireless sensor network testbed,” in JJ Pro-
ceedings of the 2008 IEEE International Conference on Technologies
for Homeland Security, Waltham, MA. Citeseer, 2008.

T. Sole, C. Fortuna, and M. Mohorcic, “Low-cost testbed development
and its applications in cognitive radio prototyping,” in Visions on
Cognitive Radio. Springer, 2014.

A.-S. Tonneau, N. Mitton, and J. Vandaele, “A survey on (mobile) wire-
less sensor network experimentation testbeds,” in Distributed Comput-
ing in Sensor Systems (DCOSS), 2014 IEEE International Conference
on. IEEE, 2014, pp. 263-268.

O. Fambon, E. Fleury, G. Harter, R. Pissard-Gibollet, and F. Saint-
Marcel, “Fit iot-lab tutorial: hands-on practice with a very large scale
testbed tool for the internet of things,” 10emes journées francophones
Mobilité et Ubiquité, UbiMob2014, 2014.

I. Chatzigiannakis, S. Fischer, C. Koninis, G. Mylonas, and D. Pfisterer,
“Wisebed: an open large-scale wireless sensor network testbed,” in
Sensor Applications, Experimentation, and Logistics. Springer, 2010,
pp. 68-87.

R. T. Fielding, “Architectural styles and the design of network-based
software architectures,” Ph.D. dissertation, University of California,
Irvine, 2000.

V. Shnayder, M. Hempstead, B.-r. Chen, G. W. Allen, and M. Welsh,
“Simulating the power consumption of large-scale sensor network
applications,” in Proceedings of the 2nd international conference on
Embedded networked sensor systems. ACM, 2004, pp. 188-200.

C. Anton, A. Toma, L. Cremene, M. Mohorcic, and C. Fortuna, “Power
allocation game for interference mitigation in a real-world experimental
testbed,” in Communications (ICC), 2014 IEEE International Confer-
ence on. 1EEE, 2014, pp. 1495-1501.

P. Ruckebusch, C. Fortuna, E. De Poorted, and I. Moerman, “Towards
a generic internet-of-things architecture: dynamic updates of network
and application modules,” Ad-hoc networks, 2015.

J. Cinkelj, M. Sterk, A. Bekan, M. Mohorcic, and C. Fortuna, “Design
trade-offs for the wireless management networks of constrained device
testbeds,” in Wireless Communications Systems (ISWCS), 2014 11th
International Symposium on. IEEE, 2014, pp. 245-250.

C. Fortuna and M. Mohorcic, “A framework for dynamic composition
of communication services,” ACM Trans. Sen. Netw., vol. 11,
no. 2, pp. 32:1-32:43, Dec. 2014. [Online]. Available: http:
//doi.acm.org/10.1145/2678216

L. D. Mendes and J. J. Rodrigues, “A survey on cross-layer solutions

for wireless sensor networks,” Journal of Network and Computer
Applications, vol. 34, no. 2, pp. 523-534, 2011.

Z. Shelby and C. Bormann, 6LoWPAN: the wireless embedded internet.
John Wiley & Sons, 2011, vol. 43.

Z. Shelby, K. Hartke, and C. Bormann, “The constrained application
protocol (coap),” 2014.

J. W. Hui and D. E. Culler, “Ipv6 in low-power wireless networks,”
Proceedings of the IEEE, vol. 98, no. 11, pp. 1865-1878, 2010.

