
Design Trade-offs for the Wireless Management
Networks of Constrained Device Testbeds

Justin Cinkelj, Marjan Sterk
XLAB LLC

Ljubljana, Slovenia
Email:{justin.cinkelj, marjan.sterk}@xlab.si

Adnan Bekan, Mihael Mohorcic and Carolina Fortuna
Jozef Stefan Institute
Ljubljana, Slovenia

Email: {adnan.bekan, miha.mohorcic, carolina.fortuna}@ijs.si

Abstract—A relatively small number of testbeds based on
constrained devices use a wireless management network, mostly
because of the unreliable communication it enables. However, in
some cases, such management networks are the only option due
to the target location of such testbeds: outdoors, on light posts,
buildings, etc. In this paper, we analyze the design trade-offs
encountered when designing a wireless management network for
testbeds based on constrained devices. First, we identify two use
cases and the functionality needed by the management network
in supporting them. Next, we discuss ways of providing the
desired functionality and illustrate the decisions we took for
designing and implementing the management network for the
extension of the LOG-a-TEC testbed together with an initial
evaluation. The analysis and the adopted decisions resulted in
a management network that is separated from the experimental
network providing improved application throughput, together
with smaller application level updates/reconfiguration size that
significantly shorten the time required to set up a new experiment.

Keywords: wireless management network; dual stack Contiki;
LOG-a-TEC experimental testbed; VESNA platform

I. INTRODUCTION

Increasing emphasis is being put on experimentally val-
idated research and a fair number of sensor based testbeds
such as Motelab [1], w-iLab.t [2], TWIST [3] and WISEBED
[4], just to name a few, exist. According to a recent survey
[5], existing sensor based testbeds are located mostly indoor
and nodes are controlled through a wired management network
such as USB or Ethernet. A number of sensor based testbeds
located outdoor such as SmartSantander [6], CitySense [7] and
LOG-a-TEC [8] also exist.

The outdoor testbeds typically use a wireless management
network (see Table I) since the costs of wiring in the target
locations are typically high. SmartSantander uses two IEEE
802.15.4 PHY/MAC interfaces on 2.4 GHz on each node, one
for the management and one for the experimental network;
and Digimesh1 for realizing multi-hop functionality on the
management network [6]. CitySense uses a Ubiquiti SR9
802.11b/g radio operating on 900 MHz for the management
network and a Wistron CM9 802.11 a/b/g operating on 2.4
GHz for the experimental network. The management network
also runs a multi-hop mesh routing protocol for providing mul-
tihop connectivity [7]. LOG-a-TEC uses one IEEE 802.15.4
PHY/MAC interface (Atmel ATZB-900-B0) on 868 MHz for

1The Digimesh Networking Protocol, http://www.digi.com/technology/
digimesh/

TABLE I. WIRELESSLY MANAGED OUTDOOR TESTBEDS.
Name Management network Experimental network
SmartSantander IEEE 802.15.4 IEEE 802.15.4

PHY/MAC on 2.4 GHz PHY/MAC on 2.4 GHz
Digimesh for mult-hop

CitySense Ubiquiti SR9 802.11 b/g Wistron CM9 802.11 a/b/g
900 MHz, multi-hop mesh on 2.4 GHz

LOG-a-TEC IEEE 802.15.4 PHY/MAC TI CC1101, CC2500 and
on 868 MHz and BitCloud NXP TDA18219HN

management purposes on each node and multihop functionality
is achieved using BitCloud2. The LOG-a-TEC experimental
network uses TI CC1101, CC2500 or NXP TDA18219HN
silicon tuner [8].

Often, the decision regarding the wireless management
network could be better supported by empirical evaluations
and trade-off analysis rather then just adopting off-the-shelf
components. For instance, when building LOG-a-TEC, our
focus was on functionality and we used off-the-shelf com-
ponents for the wireless management network and custom
firmware on the nodes, therefore the system is application
specific for spectrum sensing and cognitive radio [8]. As a
result, we typically see data rates in the range of 300 bytes/sec.
However, much prior work exists on estimating and evaluating
IEEE 802.15.4 compatible links, multihop communication and
dynamic linking of applications that can be considered as a
starting point when designing a wireless management network
for a sensor based testbed.

A study of the design choices for the existing wireless man-
agement networks of such outdoor testbeds along a thorough
analysis of the performance of these networks with respect to
various use cases is yet to be published. In this paper, we are
taking a first step in this direction by providing an analysis
of the design space and trade-offs in designing and imple-
menting a wireless management network for testbeds formed
of embedded devices. In this respect this paper provides
three contributions. First, we identify two generic use cases
for wireless experimental facilities and identify the required
functionality for these generic use cases. Second, we identify
and discuss state of the art models, developed within various
fields of computer science, that can be used for designing
and implementing the wireless management network. Although
these models have been well investigated individually, their
implementation and performance evaluation as a holistic work-
ing system is not yet available. Finally, we provide the design

2BitCloud - ZigBee PRO http://www.atmel.com/tools/bitcloud-zigbeepro.
aspx978-1-4799-5863-4/14/$31.00 c©2014 IEEE

To be published in the proceedings of IEEE ISWCS 2014 - 11th International Symposium on Wireless Communications Systems
(ISWCS). Copyright IEEE ISWCS 2014 http://www.iswcs2014.org/

choices, implementation and initial evaluation for LOG-a-TEC
2.0. This work may give valuable insights to existing testbed
operators and future testbed developers, thus having a notable
contribution to the community.

The paper is structured as follows. Section 2 identifies
two major use cases and a set of common functionalities
required by the management network supporting a testbed.
Section 3 discusses the existing models for reprogramming,
reconfiguration and updating the nodes of the testbed while
Section 4 provides an overview of the speed and reliability
of the wireless management network. The discussion on the
design, implementation and initial evaluation of the LOG-
a-TEC testbed is covered in Section 5. Finally, Section 6
summarizes the paper.

II. USE CASES AND REQUIRED FUNCTIONALITY

We identify two generic use cases for testbeds consisting
of constrained devices such as sensor nodes. The first use case,
the monitoring use case (Monitoring-UC), refers to sensor
based testbeds that enable monitoring of some phenomena
such as energy consumption, humidity, temperature, motion,
sound, gases, etc. These kinds of testbeds are typically used
by researchers to automatically acquire some data about the
phenomena under study. Examples of such testbeds are Smart-
Santander and CitySense. The second use case, the experimen-
tation use case (Experimentation-UC), refers to sensor based
testbeds that support the development of new communication
and networking technology by enabling experimentation with
new algorithms and protocols. Motelab, TWIST and LOG-a-
TEC are examples of such testbeds.

In spite of this division in two major groups, from the point
of view of the wireless management network, these testbeds
have a set of common functionalities.

a) Need for software upgrades: From the perspective
of software upgrades, we identify three types of required
updates: OS/firmware upgrades, driver updates and application
updates. OS/firmware upgrades are expected to occur when
new versions of these software are released or when a major
flaw is discovered and needs immediate fixing. The frequency
of these upgrades is expected to be of 3-4 per year at most for
both use cases. From the perspective of the size of the code
to be transfered over the air to the nodes of the testbed, these
upgrades tend to be large.

The driver updates are also expected to be required at
most few times per year for Monitoring-UCes and for most
instances of the Experimentation-UCes. However, for experi-
mental setups that involve MAC layer experiments, the need
for upgrades might be more frequent. In many cases, these
upgrades can be achieved using dynamic linking, thus avoiding
the need for realizing an OS/firmware upgrade. In such cases,
the file sent to the nodes of the testbed is relatively small
compared to the full OS/firmware image.

The expected application updates vary a lot across testbeds.
The more flexible and generic the testbed is, the higher the
number of expected application updates. These updates are
best performed using dynamic linking and in most cases their
expected size is relatively small. Performing a full OS/firmware
upload for each application tends to be uneconomical.

b) Need for data collection: Testbeds from the
Monitoring-UCes category require sensor measurement data
collection while the ones from the Experimentation-UCes
category require the collection of the experimental results.
Here we distinguish non-time critical data collection and
time-critical data collection. When the data collection is time
critical, the measured phenomenon or the experimental results
have to be sent to the consumer within a small predefined
time period from when they were produced and can also be
referred to as (near-)real time data collection. This kind of
data collection is encountered in sense-act type of systems that
base their actuating decision on the sensed value. When the
data collection is not time critical, it is typically saved locally
on the node and transmitted all at once in batch mode. This
collection mechanism is found in scenarios where the data is
being post processed.

We also distinguish reliable and unreliable data collection.
In the first case, the loss of the measurement data is undesired
while is the second case loss of data is not considered a major
issue.

c) Need for remote reconfiguration and control: Re-
mote reconfiguration is a desired feature for both use cases.
For the Monitoring-UC, the user of the testbed might want to
change the sampling rate of the sensor or might want to change
the size of the buffer that stores the measurements. For the
Experimentation-UC, the user might vary several parameters
such as the frequency at which packets are sent, the number
of retransmissions, transmitting power, receive channel filter
bandwidth, carrier sense indicator etc. In some cases, using
remote reconfiguration, the entire experiment can be remotely
reconfigured. For instance, using run-time reconfiguration, the
entire protocol stack can be reconfigured without flashing the
node. Using a fully modular implementation such as CRime
[9], an experiment that uses a gossip based algorithm for
sending data can be easily reconfigured to use another type
of algorithm.

Remote control is a desired feature for sense-act sce-
narios that can appear in both use cases. For instance,
in a Monitoring-UC, a light can be dimmed in response
to the sensed values of luminance and presence. In an
Experimentation-UC, a node can be controlled to start a
transmission after another node sensed a free channel.

III. REPROGRAMMING AND RECONFIGURATION MODELS

The basic reprogramming model involves the use of a
bootloader to replace the whole image on the node (i.e. flash
the node) [10], [11] and is the most suitable for OS/firmware
upgrades. With multiple images it is possible to support multi-
ple applications or implement failure recovery. This approach
is used by all the wired testbeds to upload new experiments.
The main drawback is large transfer size which is less suitable
for wireless management networks. One way to reduce the
transfer size is to use image compression [12].

More granular upgrades, that may sometimes be more
suitable for wireless management networks, can be achieved by
implementing functionality as applications, ran by the core OS.
Virtual machine interpreters such as Mate [13] or Java based
VM [14] have high overhead due to interpreted execution. This
can be avoided by deploying applications as modules in native

2

To be published in the proceedings of IEEE ISWCS 2014 - 11th International Symposium on Wireless Communications Systems
(ISWCS). Copyright IEEE ISWCS 2014 http://www.iswcs2014.org/

code. Pre-linked modules have near zero size overhead com-
pared to monolithic application. Dynamically linked modules
can be deployed to nodes with different OS images [15], [14].
However the overhead of additional metadata can be relatively
large compared to the application code/data size, so the users
should check if the overhead is acceptable.

As discussed in Section II, for some application updates
it is not needed to update the application program code.
Component based development requires splitting a monolitic
OS image with application(s) into multiple components, which
communicate via well defined interfaces [16], [17]. For in-
stance, RemoWare permits, beside reconfiguration, also the
addition of new components via dynamic linking [17].

IV. SPEED AND RELIABILITY OF THE WIRELESS
MANAGEMENT NETWORK

The wireless management network of the testbed will
have to provide multi-hop communication to reach all the
nodes and ensure a well connected network so that all nodes
can be reached for control, reconfiguration, data collection
and software upgrade purposes as discussed in Section III.
According to the existing literature, characterizing a multi-
hop wireless network and designing the desired management
network is not a trivial task. First, it has been shown [18] that
the reception probability of the nodes in the network has three
regions. In the first region, also called the effective region, the
packet success rate is above 90%. In the second region, also
referred to as transitional region, the packet success rate falls
off smoothly but exhibits high variation. In the third region,
also referred to clear region, the packet success rate is below
10%. The boundaries of the three regions and the fall of the
success rate are determined by several factors, among which
are the frequency band and the used transceiver.

With respect to the transitional region, it has been shown
[19] that (1) the link quality is not correlated with distance,
and (2) the extent of the transitional region seems to depend on
the environment (e.g. outdoor, indoor, presence of obstacles),
and the radio hardware characteristics. Additional observations
made by the same authors that are particularly relevant for
the purpose of this paper are: (1) link quality is anisotropic;
(2) links with very low or very high average PRRs (Packet
Reception Ratio) are more stable than links with moderate
average; (3) over short time spans, links may experience
high temporal correlation in packets reception, which leads
to short periods of 0% PRR or 100% PRR; (4) the co-
location of 802.15.4 and 802.11b networks affects transmission
in both networks due to interference, but the transmission in
802.11b networks is less affected; (5) the co-location of IEEE
802.15.4 and 802.15.1 (Bluetooth) networks affects mostly the
transmissions in the IEEE 802.15.4 network; and (6) the co-
location of IEEE 802.15.4 networks and domestic appliances
can significantly affect the transmission in the IEEE 802.15.4
networks.

In order to realize a wireless management network that
services well the testbed by being able to reach all nodes at
any time, providing good throughputs to enable configuring,
controlling and upgrading the network, it would be highly
desirable that as many as possible of the links forming the
network are in the effective region. For the ones belonging to

the transitional region, it is desirable that they are connected to
the core of the network via more than one (highly varying) link.
In order to achieve this, the candidate transceivers forming the
network have to be evaluated and the operating environment
and topology also need consideration.

V. DESIGN, IMPLEMENTATION AND INITIAL EVALUATION
OF THE LOG-A-TEC COGNITIVE NETWORKING TESTBED

A. Design choices

When building a new testbed from scratch, one is faced
with selecting a desired hardware platform and a supported
operating system. Heterogeneous testbeds may chose several
different such platforms. The use cases and functionality
discussed in Section II as well as the considerations with
respect to reprogramming, reconfiguration, speed and relia-
bility discussed in Sections III and IV should be taken into
account when selecting the hardware and OS. For instance,
with some OSes will be impossible to support dynamic linking
and/or run time reconfiguration. The resulting combination of
hardware/OS selected based on the considerations discussed in
this paper will then need to be evaluated and optimized similar
to the example provided in this section.

When upgrading an already existing testbed, the guidelines
presented in the previous sections still hold, however, there
may be already existing constraints on the choice of hardware
and software. For instance, the starting points for the extension
of the already existing LOG-a-TEC testbed was the VESNA
sensor node [8] and the ProtoStack tool [9]. The VESNA plat-
form is already being used in the existing testbed for spectrum
sensing and cognitive radio experimentation [8] and is the sup-
porting block of most of our research activities. The VESNA
core board contains a 32-bit ARM Cortex-M3 microcontroller
running at up to 72 MHz CPU clock. It has 96 kB of RAM
and 1 MB of Flash program memory. Additional non-volatile
memory is provided by a micro SD card. The ProtoStack tool
has been developed to support modular protocol development
that would enable easy experimentation with multi-hop routing
algorithms using also learned link characteristic for the routing
decision - thus enabling cognitive networking experimentation.
As ProtoStack relies on the Contiki OS, the extension has to
use this operating system.

Starting with these constraints, answers for the following
three main issues have to be found:

• How to enable two wireless - experimental and man-
agement - networks running in parallel on VESNA
with Contiki (subsection B)?

• How should experiment reconfiguration, control and
software upgrade be performed (subsection C)?

• Which transceiver should be used for the management
network in order to achieve the best possible through-
put (subsection D)?

B. Dual-stack Contiki on VESNA

The VESNA platform had a pre-existing dual radio ex-
tension board with the following options: TI CC1101 (868
MHz), TI CC2500 (2.4 GHz), AT86RF230 (2.4 GHz) and
AT86RF212 (868 MHz) transceivers. Note that the extension

3

To be published in the proceedings of IEEE ISWCS 2014 - 11th International Symposium on Wireless Communications Systems
(ISWCS). Copyright IEEE ISWCS 2014 http://www.iswcs2014.org/

Fig. 1. Dual stack Contiki using 6LowPAN for the management network.

board can support an Atmel and a TI trasceiver at the same
time, however it cannot support two Atmels or two TIs at the
same time. So while the hardware set-up already supported
dual stack (one for management and one for experimentation),
a solution for a dual-stack OS had to be developed. Contiki
OS includes two protocol stacks, one based on uIPv6 that can
be configured as 6LowPAN/uIPv6/UDP/CoAP and the second
protocol stack is custom and is referred to as Rime. The two
stacks can run one at the time and not in parallel. 6LowPAN
assumes a IEEE802.15.4 compatible transceiver and since only
the Atmel transceivers comply to this, the most natural decision
was to consider the Atmel transceivers for the management
network and the TI transceivers for the experimental network.

Next, we extended the Contiki OS with dual stack oper-
ation. The original code uses compile-time defined network
layers. Some layers are used by both Rime and uIP at the
same time (see framer nullmac in Figure 1), so we modified
the networking code to explicitly pass information about which
network stack the current packet belongs to. It should be noted
that in a single stack Contiki, Rime uses 2 bytes for node
network address, while uIP requires 8 bytes. To keep Rime
packet small, thus maintaining the low power consumption
of the Rime stack, we modified Contiki to permit different
network address size for Rime and uIPv6 packets respectively.

Finally, we integrated the new, Composable Rime [9]
network stack that enables reconfigurable protocol stacks in the
Contiki OS and configured the operating system to support the
6LowPAN based management network and the CRime based
experimental network in parallel as depicted in Figure 1.

C. Software upgrades, reconfiguration and control

As discussed in Sections II and III, software upgrades
require a bootloader running on the VESNA platform and
a large image to be sent to the node over the management
network. In the case under investigation, the full image of the
monolithic dual stack is in the range of 150 kB as shown
in Table II. This image corresponds to a particular application
(i.e. single experiment) and needs to be changed should another
application be needed (i.e. flash the node).

In order to support minor updates of drivers and appli-
cations, we used dynamic loading through the Contiki ELF
(Executable and Linkable Format) loader module. Our main
interest was to enable dynamically reprogrammable network
stacks - in other words, we investigated the possibility of
transferring new stack compositions, each representing a new
experiment. This requires splitting the application into two
parts.

TABLE II. TRANSFER SIZE.
Approach transfer size useful size overhead

[B] [B] [%]
monolitic dual stack image 151540 151540 0
hello-world ELF app 1752 399 78
trickle RIME ELF app 11316 3930 65
monolitic dual stack config packet 1635-7937 1635-7937 0

The first part, called core, is responsible for loading the
minimal Contiki OS with added ELF loader functionality. This
part of the node firmware is not changed during reprogram-
ming. It is responsible for downloading the ELF application
through the management network and to dynamically link it
with the core OS. To implement it, we had to include the base
Contiki image with uIPv6, TCP/UDP and CoAP, also support
for: (1) SD card driver and Contiki Coffee FS; (2) utility
application to receive ELF file from the network and write it to
a file; (3) ELF loader (generic and CPU architecture specific
part) to do actual ELF file relocation; and (4) the symbol table
stores the addresses and names of all core OS functions, which
might be called by the ELF application.

The second part is the ELF application. The application
calls functions exported by the core OS, and is compiled as a
standard ELF file. When splitting the previous monolithic dual
stack image into core OS (with uIP management network) and
ELF application (with CRime experimental network) we have
the option to leave some code parts, used only by CRime,
in the core OS. In particular, we decided to leave the TI CC
radio driver in the core OS. As that particular piece of code is
already stable, we expect it will not require frequent updates.
This resulted in about 50% smaller ELF application file.

The automatically generated symbol table contains the
address and the name of each function in the core. Many of
them are not even supposed to be used by the application (low
level hardware initialization, static functions, ARM CMSIS
library functions). Thus we minimized the core OS image size
by excluding unneeded function entries from the symbol table.

We looked at the size of the file to be transferred to the
nodes over the air for the very simple hello-world application
and for a more complex trickle stack. The size of the hello-
world ELF file is 1.7 kB while the size for the trickle ELF file
is 11 kB as listed in Table II. The trickle ELF application is
small compared to the full OS image, but it still does have a
significant overhead due to the ELF file metadata.

This observation led us to look at run-time reconfiguration
options, where all the CRime modules are loaded on the node
using a monolithic system image and then a stack composition
message, which describes and configures the experiment, is
sent. We used an unoptimized JSON format for the config-
uration message whose size can vary between 1.6 kB for a
simple experiment to 8 kB for a more complex experiment as
shown in Table II. The code required for parsing the JSON
and generating the experiment added additional 7.5 kB to the
size of the system image.

D. Transceiver selection

In Section V-B, we narrowed down the candidate
transceivers supporting the management network to two Atmel
transceivers: AT86RF230 (2.4 GHz) and AT86RF212 (868
MHz). The first step in evaluating these transceivers was to

4

To be published in the proceedings of IEEE ISWCS 2014 - 11th International Symposium on Wireless Communications Systems
(ISWCS). Copyright IEEE ISWCS 2014 http://www.iswcs2014.org/

determine the three operating regions described in Section IV.
The experiment was carried out on a 55 meter corridor of a
long building where several WiFi access points are also active.
Figure 2 plots the three regions empirically determined in our
experiments for the AT86RF230 (2.4 GHz) transceiver. The
tests show that the effective region goes up to 22 m in the line
of sight conditions (no obstacles on the corridor). Additionally,
we performed experiments to understand how the throughput
is affected by the packet rate as shown in Figure 3. The results
show that rates exceeding 70 packets per second lead to packet
losses. The plots for the AT86RF212 (868 MHz) transceiver
are similar (omitted for lack of space), with the effective region
ending at 28 m and the optimal application rate being also at
70 packets per second.

After determining the three regions for the two transceivers
under consideration, we looked at the application transfer rates
and various settings that influence these. For instance, by using
the header compression enabled by 6LoWPAN, the application
payload can be increased thus maximizing the data rate. Figure
4 presents the experimental set-up used for measuring the
uplink/downlink throughput. The CoAP client was mimicking
reprogramming functionality by sending large files for repro-
gramming the nodes running CoAP server and data collection
functionality by requesting (randomly generated) data from the
nodes. The CoAP clients are located on a wired IPv4/IPv6
network, then use a gateway towards the border router which
has a wireless management interface for the nodes. The links
between the nodes and the border router were within the
effective regions, hence reliable.

Fig. 2. Reception success rate as a function of distance for the AT86RF230
(2.4 GHz) transceiver.

Fig. 3. Reception success rate as a function of application packet rate for
the AT86RF230 (2.4 GHz) transceiver.

TABLE III. EVALUATION OF AT86RF212.
Size Download Upload Download Upload
[bytes] time [s] time [s] throughput [kbs] thoughput [kbs]
128 0.185 0.167 5.405 5.988
1280 1.705 1.655 5.865 6.042
12800 16.614 16.666 6.019 6.000
128000 176.324 168.800 5.671 5.924
256000 346.699 339.327 5.768 5.894

TABLE IV. EVALUATION OF AT86RF230.
Size Download Upload Download Upload
[bytes] time [s] time [s] throughput [kbs] thoughput [kbs]
128 0.086 0.069 11.627 14.492
1280 0.686 0.694 14.577 14.409
12800 6.673 6.965 14.985 14.357
128000 68.191 68.899 14.664 14.513
256000 139.696 139.241 14.316 14.363

Fig. 4. Measurement set-up for determining uplink and downlink datarates.

We performed two different types of experiments, upload
and download for two different sets of radio transceivers Atmel
AT86RF212 (Table III) and AT86RF230 (Table IV). Each type
of the experiment had five different steps and with each step we
were increasing the size of the data (i.e. file) to be transmitted
between 128 and 256000 bytes. To get more reliable results we
repeated each step 10 times and then we calculated the average
throughput value. With respect to the upload and download
we performed 100 measurements per radio transceiver. From
the results in III and IV, it can be seen that AT86RF230 is
achieving higher data throughput and the links are more stable.

In our evaluation we only considered packets that contain
payload data, avoiding acknowledgments messages that are
sent for each packet and that are not relevant for the application
data rate. We decided to use HC01 and HC02 compression for
6LoWPAN because if the CoAP client is accessing the testbed
from a different network subnet, the IPv6 address will not
be fully compressed in any case. Packet fragmentation was
disabled. MAC header compression was not used, because it
is supported only by the AT86RF212 MAC. As a note, there
are several configurations and tunings that can be performed
with such an evaluation. Configurations in the Contiki OS, the
used drivers and the point from which the client is accessing
the node influence the final performance of the wireless
management network. An upper and lower bound as a function
of configurations, are indicated by Figures 5 and 6 where the
application payload is 0 - 53 and 0 - 95 bytes respectively.

Tables III and IV are summarizing results where 64 bytes
of application payload has been used. It can be seen that
transferring 128000 bytes (a bit less than a full system image
from Table II), 68 seconds are needed when using AT86RF230
and 177 seconds when using AT86RF212. For the dynamic
loading of a simple application or it’s run-time reconfiguration
using a non-optimal JSON format, less than a second is needed
with AT86RF230 and under 2 seconds with AT86RF212 - thus
being more economic for the wireless management network.

5

To be published in the proceedings of IEEE ISWCS 2014 - 11th International Symposium on Wireless Communications Systems
(ISWCS). Copyright IEEE ISWCS 2014 http://www.iswcs2014.org/

Fig. 5. Data frame format - Application layer (worst case).

Fig. 6. Data frame format - Application layer (best case).

VI. SUMMARY AND FUTURE WORK

In this paper, we took a first step in providing an analysis of
the design space and trade-offs involved in setting up a man-
agement network for testbeds formed of embedded devices.
We first identified two generic use cases - the Monitoring-
UC and the Experimentation-UC - that are relevant from an
experimenter’s point of view. Then we identified the function-
ality required from the management network to support these
use cases, namely the software upgrade, data collection and
configuration and control functionalities. We then looked at
available models for reprogramming and reconfiguring embed-
ded devices and at aspects concerning the speed and reliability
of the multihop wireless management network. Finally we
showed the design, implementation and initial evaluation of
the new management network for the extension of LOG-a-
TEC.

The implemented dual stack network enables to remotely
upgrade the nodes of the testbed without the need for wired
infrastructure and still benefit from a management network that
is separated from the experimental network rather than piggy-
backing on it. The improved application throughput, together
with the smaller application level updates/reconfiguration size
significantly shorten the time required to set up a new exper-
iment.

As future work, we plan to extend the evaluation for a
multi-hop wireless management network in indoor scenario
and then move to a multi-hop wireless management network
in an outdoor scenario, similar as we did for LOG-a-TEC 1.0
[20].

ACKNOWLEDGMENT

The authors would like to thank all our colleagues that
contributed to this work. This project was partly supported by
the FP7 projects CREW (ICT-258301) and ABSOLUTE (ICT-
318632) and ARRS through grant J2-4197.

REFERENCES

[1] G. Werner-Allen, P. Swieskowski, and M. Welsh, “Motelab: A wireless
sensor network testbed,” in Proceedings of the 4th International Sym-
posium on Information Processing in Sensor Networks, ser. IPSN ’05.
Piscataway, NJ, USA: IEEE Press, 2005.

[2] S. Bouckaert, W. Vandenberghe, B. Jooris, I. Moerman, and P. De-
meester, “The w-ilab. t testbed,” in Testbeds and Research Infrastruc-
tures. Development of Networks and Communities. Springer, 2011, pp.
145–154.

[3] V. Handziski, A. Köpke, A. Willig, and A. Wolisz, “Twist: a scalable
and reconfigurable testbed for wireless indoor experiments with sensor
networks,” in Proceedings of the 2nd international workshop on Multi-
hop ad hoc networks: from theory to reality. ACM, 2006, pp. 63–70.

[4] I. Chatzigiannakis, S. Fischer, C. Koninis, G. Mylonas, and D. Pfisterer,
“Wisebed: an open large-scale wireless sensor network testbed,” in
Sensor Applications, Experimentation, and Logistics. Springer, 2010,
pp. 68–87.

[5] A. Gluhak, S. Krco, M. Nati, D. Pfisterer, N. Mitton, and T. Razafind-
ralambo, “A survey on facilities for experimental internet of things
research,” Communications Magazine, IEEE, vol. 49, no. 11, 2011.

[6] L. Sanchez, L. Muñoz, J. A. Galache, P. Sotres, J. R. Santana,
V. Gutierrez, R. Ramdhany, A. Gluhak, S. Krco, E. Theodoridis
et al., “Smartsantander: Iot experimentation over a smart city testbed,”
Computer Networks, 2013.

[7] J. Bers, A. Gosain, I. Rose, and M. Welsh, “Citysense: The design and
performance of an urban wireless sensor network testbed,” in JJ Pro-
ceedings of the 2008 IEEE International Conference on Technologies
for Homeland Security, Waltham, MA. Citeseer, 2008.

[8] T. Solc, C. Fortuna, and M. Mohorcic, “Low-cost testbed development
and its applications in cognitive radio prototyping,” in Visions on
Cognitive Radio. Springer, 2014.

[9] C. Fortuna, “Dynamic composition of communication systems,” in PhD
dissertation. Jozef Stefan International Postgraduate School, Ljubljana,
Slovenia, 2012.

[10] A. Marchiori and Q. Han, “A two-stage bootloader to support multi-
application deployment and switching in wireless sensor networks,” in
Computational Science and Engineering, 2009. CSE ’09. International
Conference on, vol. 2, Aug 2009, pp. 71–78.

[11] S. Brown and C. J. Sreenan, “Software update recovery for wireless
sensor networks,” in Sensor Applications, Experimentation, and Logis-
tics, ser. Lecture Notes of the Institute for Computer Sciences, Social
Informatics and Telecommunications Engineering. Springer, 2010,
vol. 29, pp. 107–125.

[12] J. Jeong and D. Culler, “Incremental network programming for wireless
sensors,” in Sensor and Ad Hoc Communications and Networks, 2004.
IEEE SECON 2004. 2004 First Annual IEEE Communications Society
Conference on, Oct 2004, pp. 25–33.

[13] P. Levis and D. Culler, “Mate: a tiny virtual machine for sensor
networks,” in Proceedings of the 10th International Conference on
Architectural Support for Programming Languages and Operating Sys-
tems, vol. 37, Oct. 2002, pp. 85–95.

[14] A. Dunkels, N. Finne, J. Eriksson, and T. Voigt, “Run-time dynamic
linking for reprogramming wireless sensor networks,” in Proceedings
of the 4th International Conference on Embedded Networked Sensor
Systems, ser. SenSys ’06. New York, NY, USA: ACM, 2006.

[15] W. Dong, C. Chen, X. Liu, J. Bu, and Y. Liu, “Dynamic linking and
loading in networked embedded systems,” in Mobile Adhoc and Sensor
Systems, 2009. MASS ’09. IEEE 6th International Conference on, Oct
2009, pp. 554–562.

[16] G. Manik and B. Eliane, “Towards the design of a component-based
context-aware framework for wireless sensor networks,” in The Sixth
International Conference on Sensor Technologies and Applications,
SENSORCOMM 2012, Aug 2012, pp. 101–105.

[17] A. Taherkordi, F. Loiret, R. Rouvoy, and F. Eliassen, “Optimizing sensor
network reprogramming via in situ reconfigurable components,” ACM
Trans. Sen. Netw., vol. 9, no. 2, pp. 14:1–14:33, Apr. 2013.

[18] A. Woo, T. Tong, and D. Culler, “Taming the underlying challenges
of reliable multihop routing in sensor networks,” in Proceedings of the
1st international conference on Embedded networked sensor systems.
ACM, 2003, pp. 14–27.

[19] N. Baccour, A. Koubaa, L. Mottola, M. A. Zuniga, H. Youssef, C. A.
Boano, and M. Alves, “Radio link quality estimation in wireless sensor
networks: a survey,” ACM Transactions on Sensor Networks (TOSN),
vol. 8, no. 4, p. 34, 2012.

[20] T. Šolc and Z. Padrah, “Network design for the log-a-tec outdoor
testbed,” in The 2nd International Workshop on Measurement-based
Experimental Research, Methodology and Tools, May 2013.

6

