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Abstract 

Typically, experimental WSN deployments can be found in research institutions and 
consist of few tens to few hundreds of low cost, low-power devices with limited processing 
and communication capabilities. These are typically centrally controlled and have a two 
or three-tier architecture. A relatively small number of these deployments are based on 
constrained devices and use a wireless management network, mostly because of the 
unreliable communication it enables. However, in some cases, such management networks 
are the only option due to the target location of such testbeds: outdoors, on light posts, 
buildings, etc.  

In this thesis we propose a single-tier architecture for RESTful-based fully 
reconfigurable wireless sensor network testbed, which (i) can be used for experimentally 
driven research and development; (ii) should be deployable on an ad-hoc basis in any 
target environment; (iii) should be remotely configurable and controllable using simple 
RESTful APIs; (iv) has to be able to reconfigure and support easy experimentation and 
testing of standard protocol stacks (i.e. uIPv4 and uIPv6) as well as non-standardized 
clean-slate protocol stacks. In order to achieve this, we identified a list of challenges and 
requirements for designing a wireless sensor network testbed with optimal configuration 
to enable experimenting with new applications in, for instance, smart cities, industrial 
and building automation environments, environmental monitoring, etc.  

As a practical part of the thesis we implemented and evaluated the performance of 
the proposed architecture on a sensor network consisting of VESNA platform nodes. The 
reference implementation of the architecture uses a dual-stack Contiki OS with the 
ProtoStack tool for dynamic composition of services. The parameters of the protocol 
stacks, standardized or non-standardized, can be remotely reconfigured through easy to 
use CoAP handlers. Additionally, we are able to fully reconfigure clean-slate protocol 
stacks at run-time. The architecture enables easy set-up of the network by using a 
protocol that automatically sets up a multi-hop network (i.e. RPL protocol) and it 
enables reconfiguration and experimentation by using a simple, RESTful interaction with 
each node individually.  

For the validation of the reference implementation, we performed a set of 
uplink/downlink experiments on the management network and also executed localization 
experiment for the validation of the experimental network. The obtained experimental 
results of transmission and relocation times are in line with the expected values, proving 
that the proposed architecture provides a significantly faster way of deployment and 
configuration of WSN experimental testbeds compared to traditional deployment of 
sensor networks relying also on wired infrastructure. 
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Povzetek 

V raziskovalnih organizacijah pogosto naletimo na eksperimentalna brezžična senzorska 
omrežja, ki jih običajno sestavlja od nekaj deset do nekaj sto nizkocenovnih naprav z 
majhno porabo in omejenimi računskimi in komunikacijskimi zmogljivostmi. Ta omrežja 
so navadno centralno krmiljena in imajo dvo- ali trokrožno arhitekturo. Razmeroma 
majhno število teh postavitev je zasnovanih na napravah z omejenimi zmogljivostmi in 
brezžičnem omrežju za upravljanje, v največji meri zaradi nezanesljivosti komunikacije. 
Seveda pa je v mnogih ciljnih obratovalnih okoljih brezžično omrežje za upravljanje edina 
možnost za izvedbo eksperimentalnega brezžičnega senzorskega omrežja, še posebno na 
prostem, na drogovih javne razsvetljave, na stavbah itd.  

V magistrski nalogi smo predlagali enokrožno arhitekturo za povsem nastavljivo 
eksperimentalno brezžično senzorsko omrežje na podlagi RESTful storitev. To omrežje 
(1) je namenjeno eksperimentalno usmerjenim raziskavam in razvoju, (2) se lahko postavi 
na zahtevo v poljubnem ciljnem obratovalnem okolju, (3) mora podpirati nastavljanje in 
nadzor na daljavo preko enostavnih RESTful aplikacijskih vmesnikov ter (4) se mora biti 
sposobno preoblikovati in podpirati enostavno izvajanje eksperimentov in preizkušanja 
standardiziranih (npr. uIPv4 in uIPv6) kot tudi nestandardiziranih komunikacijskih 
protokolnih skladov. Identificirali smo vrsto izzivov in zahtev za načrtovanje brezžičnih 
senzorskih omrežij z optimalno konfiguracijo za eksperimentiranje z novimi aplikacijami 
za pametna mesta in stavbe, avtomatizacijo industrijskih okolij, nadzor okolja in drugo. 

V praktičnem delu magistrske naloge smo realizirali in ovrednotili delovanje 
predlagane arhitekture v senzorskem omrežju, zasnovanem iz vozlišč na platformi 
VESNA. Referenčna izvedba arhitekture uporablja modificiran operacijski sistem Contiki 
z dvojnim protokolnim skladom in orodje ProtoStack za dinamično sestavljanje 
komunikacijskih storitev. Parametre standardiziranih ali nestandardiziranih protokolnih 
skladov lahko nastavljamo na daljavo z za uporabo enostavnimi upravljavci CoAP. Med 
samim izvajanjem lahko prenastavimo tudi celoten protokolni sklad. Arhitektura 
omogoča enostavno vzpostavitev omrežja z uporabo protokola, ki samodejno vzpostavlja 
omrežje z več skoki (tj. protocol RPL), ter nastavljanje in eksperimentiranje z uporabo 
preproste RESTful interakcije z vsakim posameznim vozliščem. 

Za potrditev referenčne izvedbe smo izvedli niz poskusov na navzgornjih in 
navzdolnjih povezavah omrežja za upravljanje ter eksperiment lokalizacije na 
eksperimentalnem omrežju. Doseženi eksperimentalni rezultati za čas prenosa in 
premeščanja informacijskih blokov so v skladu s pričakovanimi vrednostmi in dokazujejo, 
da predlagana arhitektura v primerjavi z obstoječimi rešitvami, ki običajno vključujejo 
tudi žično infrastrukturo, omogoča bistveno hitrejše postavljanje in nastavljanje 
eksperimentalnih brezžičnih senzorskih omrežij. 

 





xiii 

Contents 

List of Figures xv 

List of Tables xvii 

Abbreviations xix 

1 Introduction 1 
1.1 Motivation ........................................................................................................... 1 
1.2 Problem Formulation ........................................................................................... 2 
1.3 Goals of the Thesis .............................................................................................. 3 
1.4 Overview of the Thesis ........................................................................................ 4 

2 Background and Key Enablers 5 
2.1 Wireless Sensor Networks .................................................................................... 5 
2.2 IEEE 802.15.4 ...................................................................................................... 6 
2.3 IP in Wireless Sensor Networks ........................................................................... 7 

2.3.1 IPv6 .......................................................................................................... 8 
2.3.2 6LoWPAN ................................................................................................ 8 

2.4 Representational State Transfer (REST) ............................................................. 9 
2.5 Constrained Application Protocol (CoAP) ......................................................... 10 
2.6 Operating Systems for WSN platforms ............................................................... 10 
2.7 WSN Hardware Platforms .................................................................................. 11 
2.8 WSN Experimental Testbeds .............................................................................. 14 

3 Architecture Design of WSN Testbed 17 
3.1 Challenges ........................................................................................................... 17 

3.1.1 Resource-aware Experimentation ............................................................ 17 
3.1.2 Context-aware Deployment and Configuration ....................................... 17 
3.1.3 Remote Control and Optimization .......................................................... 18 

3.2 Requirements for Remote Control and Optimization ......................................... 18 
3.2.1 Remote Monitoring and Diagnosis .......................................................... 18 
3.2.2 Remote Parameter Tuning ...................................................................... 18 
3.2.3 Over the Air Software Updates and Upgrades ........................................ 19 
3.2.4 Modular Stack Reconfiguration ............................................................... 19 
3.2.5 Mapping of Challenges and Requirements ............................................... 20 

3.3 Proposed System Architecture ............................................................................ 20 
3.3.1 WSN Node Architecture .......................................................................... 21 
3.3.2 Reprograming and Reconfiguration Models ............................................. 22 
3.3.3 Configurable Radio Transceivers ............................................................. 22 
3.3.4 Configurable Protocol Stack and/or Modular and Configurable Protocol 

Stack........................................................................................................ 23 
3.3.5 Monitoring, Composition and Control Block ........................................... 23 



xiv   

4 Implementation of RESTful-Based Experimental Testbed 25 
4.1 Testbed Deployment .......................................................................................... 25 

4.1.1 LOG-a-TEC 2.0 RESTful Testbed ......................................................... 25 
4.2 VESNA Platform with Dual-stack ContikiOS .................................................... 27 
4.3 Software Upgrades, Updates and Reconfiguration ............................................. 28 
4.4 CoAP Handlers Using REST Principles ............................................................. 29 

4.4.1 Remote Monitoring and Diagnosis .......................................................... 29 
4.4.2 Remote Parameter Tuning ..................................................................... 30 
4.4.3 Over the Air Software Updates and Upgrades ........................................ 31 
4.4.4 Modular Stack Reconfiguration .............................................................. 32 

5 Performance Evaluation of WSN Testbed 33 
5.1 Evaluation of Radio Transceivers for the Management Network ....................... 33 
5.2 Evaluation of the Wireless Management Network ............................................. 36 
5.3 Evaluation of Experimental Network ................................................................. 40 

6 Conclusions 43 
6.1 Future Work ...................................................................................................... 43 

References 45 

Bibliography 49 

Biography 51 
 
 



xv 

List of Figures 

Figure 1.1: Typical WSN testbed architectures. ................................................................. 2 
Figure 2.1: Interoperability of IP architecture. ................................................................... 7 
Figure 2.2: VESNA sensor platform. ................................................................................ 12 
Figure 2.3: TelosB mote open-source platform. ................................................................ 13 
Figure 2.4: iSense modular platform. ................................................................................ 13 
Figure 2.5: MICAz mote. .................................................................................................. 14 
Figure 3.1: System architecture. ....................................................................................... 21 
Figure 3.2: Block scheme of an experimental WSN node. ................................................ 22 
Figure 4.1: Example deployment of the ad-hoc testbed. ................................................... 26 
Figure 4.2: Dual stack Contiki using 6LowPAN for the management network. ............... 27 
Figure 4.3: Loading ELF application. ............................................................................... 29 
Figure 4.4: Remote monitoring. ........................................................................................ 30 
Figure 4.5: Remote configuration of channel and transmission power. ............................. 30 
Figure 4.6: Full operating system/firmware upgrade. ....................................................... 31 
Figure 4.7: Application or drivers update. ........................................................................ 32 
Figure 4.8: Run-time stack reconfiguration. ..................................................................... 32 
Figure 5.1: Reception success rate as a function of a distance for the AT86RF231                   
(2.4 GHz) transceiver, with application rate of 70 packet/s. ............................................ 34 
Figure 5.2: Reception success rate as a function of application packet rate for the 
AT86RF231 (2.4 GHz) transceiver, at the distance of 16 m. ........................................... 34 
Figure 5.3: Reception success rate as a function of a distance for the AT86RF212      
(868 MHz) transceiver, with application rate of 40 packet/s. ........................................... 35 
Figure 5.4: Experiment setup. .......................................................................................... 35 
Figure 5.5: Network topology of managment network. ..................................................... 37 
Figure 5.6: Average uplink/downlink data rate with standard deviation of 50 experiments 
per node. ………………………. ................................................................................................... 38 
Figure 5.7: Transmitter localization using Rings Overlap localization algorithm. ............ 40 
Figure 5.8: Localization of transmitter using only RSSI data, no knowledge about radio 
environment (error~7.5m). ................................................................................................ 41 
Figure 5.9: Transmitter localization using RSSI with some knowledge of radio 
environment (error~1.1m). ................................................................................................ 41 
 

 
 





xvii 

List of Tables 

Table 3.1: Requirements and challenges. .......................................................................... 20 
Table 4.1: Approach transfer size. .................................................................................... 28 
Table 5.1: Upload and Download troughput of AT86RF212. ........................................... 36 
Table 5.2: Upload and Download troughput of AT86RF212. ........................................... 36 
Table 5.3: Uplink/downlink data rate of 15 Nodes. .......................................................... 38 
Table 5.4: Transfer size. ................................................................................................... 39 
Table 5.5: Application deployment time. .......................................................................... 39 
 

 





xix 

Abbreviations 

ARM . . . Advanced RISC Machines 

ADC . . . Analog-to-Digital Converter 

API . . . Application Programming Interface 

BLE . . . Bluetooth Low Energy 

CSMA . . . Carrier Sense Multiple Access 

CPU . . . Central Processing Unit  

CoAP . . . Constrained Application Protocol  

DAC . . . Digital-to-Analog Converter 

DHCP . . . Dynamic Host Configuration Protocol 

ELF . . . Executable and Linkable Format 

HTTP . . . Hyper Text Transfer Protocol 

ISM . . . Industrial, Scientific and Medical 

IrDA . . . Infrared Data Association 

I2C . . . Inter-Integrated Circuit 

ICMP . . . Internet Control Message Protocol 

IETF . . . Internet Engineering Task 

IoT . . . Internet of Things 

IP . . . Internet Protocol 

6LoWPAN . . . IPv6 over Low Power Wireless Personal Area Networks 

JSON . . . JavaScript Object Notation 

JSI . . . Jožef Stefan Institute 

LQI . . . Link Quality Indicator 

M2M . . . Machine to Machine 

MTC . . . Machine Type Communications 

MTU . . . Maximum Transmission Unit 

MAC . . . Media Access Control 

NDP . . . Neighbour Discovery Protocol  

OTAP . . . Over the Air Programming 

PRR . . . Packet Reception Ratio 

PAN . . . Personal Area Network 



xx   

PHY . . . Physical layer of the OSI model 

RAM . . . Random Access Memory 

ROM . . . Read Only Memory 

RSSI . . . Received Signal Strength Indicator  

RISC . . . Reduced Instruction Set Computing 

RPC . . . Remote Procedure Call 

REST . . . Representational State Transfer 

RFC . . . Request for Comments 

RPL . . . Routing Protocol for Low-Power and Lossy Networks 

SD . . . Secure Digital  

SNC . . . Sensor Node Core 

SNE . . . Sensor Node Expansion 

SNR . . . Sensor Node Radio 

SPI . . . Serial Peripheral Interface Bus 

SRD . . . Short Range Devices 

SNMP . . . Simple Network Management Protocol  

SoC . . . System on a Chip 

TCP . . . Transmission Control Protocol 

TVWS . . . TV White Spaces 

UHF . . . Ultra-High Frequency 

URI . . . Uniform Resource Identifier 

UART . . . Universal Asynchronous Receiver/Transmitter 

USB . . . Universal Serial Bus 

USRP . . . Universal Software Radio Peripheral 

UDP . . . User Datagram Protocol  

VESNA . . . Versatile platform for Sensor Network Applications 

VHF . . . Very High Frequency 

WSN . . . Wireless Sensor Network 

 
 



1 

Chapter 1 

1 Introduction 

In this introductory chapter, we start with the motivation behind this thesis and the 
formulation of the problem addressed. Then, we define the goals of this thesis and 
provide a brief overview of related work. Finally, in the last subsection we introduce an 
outline of the thesis. 

1.1 Motivation 

Different aspects of wireless sensor networks (WSN), such as their single and multi-hop 
connectivity, energy consumption and system level aspects have been well studied for 
more than a decade now. More recently, there are signals of broader industrial adoption 
in real operating environments through the Internet of Things (IoT) concept and 
machine type communications (MTC) paradigm. We are witnessing that WSNs are 
starting to play an increasingly important role in monitoring and automatizing our 
houses and cities. One of the reasons why their adoption still seems to be slow is the fact 
that the majority of the past studies was only theoretical, with relatively few results 
verified on actual testbeds typically comprised of homogeneous and purposely designed 
sensor nodes. Even though projects such as Arduino and RaspberryPi significantly 
lowered the experimentation barrier, setting up and tuning reliable fully operating ad-hoc 
network of sensor nodes in a targeted operating environment, for instance in an industrial 
warehouse or a production plant, is still a challenging and time consuming task. These 
problems with the WSN deployments in production environment progressively attract 
research community attention, leading to an increasing number of experimental WSN 
testbeds. 

Typical experimental WSN deployments consist of a few tens to a few hundreds of 
low cost, low-power devices with limited communication capabilities. These are typically 
centrally controlled and have a two or three-tier architecture [1], as it is depicted in 
Figure 1.1. The two-tier architecture comprises WSN devices (tier1) and the wired 
backbone to the server (tier2). WSN devices are organized in a flat architecture in this 
case. The three-tier architecture includes an additional gateway tier that enables a 
hierarchical WSN architecture. The three-tier architectures tend to be less energy 
efficient as the middle tier contains a significant number of high-power devices. An 
example of two-tier sensor network deployment is MIRAGE from Intel Berkeley and of 
three-tier are WISBED, TWIST and SmartSantander. 

These deployments are controlled and managed through a wired management network 
and are mostly used for experimental research on wireless protocols. A number of more 
recent sensor deployments and testbeds such as SmartSantander [2], CitySense [3] and 
LOG-a-TEC [4] are located outdoors. To reduce the deployment costs, outdoor testbeds 
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typically use a wireless management network [1]. More recently, a trend towards mobile 
wireless sensor network testbeds such as MOTEL, CONET-IT and RoombaNet can be 
noticed [5]. Obviously, due to mobility, these testbeds are also controlled through a 
wireless management network. 

 

 

Figure 1.1: Typical WSN testbed architectures. 

Independent of their architecture, type of management network or degree of mobility, 
the deployments dedicated to sensor data collection in some particular application 
domain such as IoT-Lab [6], WISEBED [7] and SmartSantander typically provide 
RESTful [8] interfaces through which the data is collected. The deployments dedicated to 
experimental research and development of new wireless technologies, e.g. NITOS, w-
iLab.t and TWIST, provide non-RESTful interfaces such as direct ssh access to each 
node. 

Existing two-tier and three-tier experimental testbeds require additional layer of 
devices for enabling full connectivity to the Internet and control interface to the end-
user. To move such complex system architecture for the experimental purposes to the 
environments such as industrial warehouse or production plant can be complicated and 
time consuming. Even to reproduce such architectures is in most of the cases too 
expensive and not worth the effort for a short-term period. 

1.2 Problem Formulation 

The adoption of IoT/M2M in actual application areas such as smart cities, industry and 
building automation could be significantly faster if a cost-effective way of deploying 
reliable pilot wireless communication networks in actual operating environment was 
available. Current off-the-shelf solutions tend to be unreliable while custom built 
solutions by professionals require significant investment costs in infrastructure. The 
design of a new WSN with optimal configuration for industrial or building automation 
can thus be very challenging. 
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The purpose of the thesis is to define and evaluate an architecture for a RESTful-
based fully reconfigurable experimental WSN testbed, suitable for fast on-site 
deployment, demonstration and testing in real operating environment that can foster the 
adoption of WSNs in production environments. Such testbed should be comprised of 
easily configured low-power devices that can be integrated into the working environment 
without interfering with the existing infrastructure. 

The working hypothesis is that a system architecture which enables (i) an ad-hoc 
deployment of an experimental network of sensor nodes and (ii) custom configuration of 
the wireless solution in the actual target production environment rather than in a 
simulator or a lab will result in a significantly faster way of deployment of WSNs and in 
testing and validation of various solutions in real operating environments. 

1.3 Goals of the Thesis 

There is a significant body of work on large scale smart city, smart building or industrial 
adoption of sensor networks through the Internet of Things (IoT) concept and machine 
type communications (MTC) paradigm where WSNs are starting to play an increasingly 
important role in monitoring and automatizing our cities and houses. Such complex 
operating environments, however, call for careful and thorough testing and validation of 
new solutions early in the development process and in close to targeting operating 
environment essentially requiring experimental testbeds.  

We aim to propose an architecture for a single-tier WSN testbed for experimentally 
driven research and development that can be (i) deployed on an ad-hoc basis in any 
target environment and (ii) remotely configured and controlled using simple RESTful 
APIs. The practicability of proposed architecture will be evaluated using a reference 
implementation consisting of VESNA platforms. Thus we will extend the predominant 
practice of theoretical and simulation-based performance evaluation of proposed solutions 
and enable broader adoption of experimentally driven research and development. 
 

The main goals of the thesis are the following: 

 Propose an architecture for RESTful-based fully reconfigurable wireless sensor 

network testbed, which (i) can be used for experimentally driven research and 

development; (ii) should be deployable on an ad-hoc basis in any target 

environment and (iii) should be remotely configurable and controllable using 

simple RESTful APIs; (iv) has to be able to reconfigure and support easy 

experimentation and testing of standard protocol stacks (i.e. uIPv4 and uIPv6) as 

well as non-standardized clean-slate protocol stacks. 

 Develop software libraries that enable remote reconfiguration of the protocol 

stack parameters through the RESTful API and enable full reconfiguration of 

clean-slate protocol stacks in run-time. 

 Develop software libraries for the RESTful-based full control of device’s resources 

and the experiment. 

 Provide reference implementation of proposed architecture using VESNA 

platforms. 

 Evaluate the performance of a VESNA platform-based experimental testbed in 

terms of throughput and experiment setup. 
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1.4 Overview of the Thesis 

This thesis is organized in six core chapters with the content of each chapter summarized 
as follows.  

Chapter 1 presents motivation of the work, formal presentation of the problem and 
the goals of the master thesis. 

Chapter 2 introduces background of wireless sensor networks, key enablers for 
building a network infrastructure and an overview of hardware and software solutions for 
WSN. Related work on some of already existing experimental WSN testbeds is also given 
within this chapter. 

Chapter 3 presents challenges and requirements for an architecture for RESTful-based 
experimental testbed and finally presents the proposed solution for such testbed. 

Chapter 4 presents in detail a reference implementation of the proposed system 
architecture starting with dual-stack functionality and programming models. Then, with 
sequence diagrams it depicts all enablers and procedures for monitoring, control and 
composition of WSN experimental testbed. Finally in the last section it presents the 
deployment and implementation of WSN experimental testbed. 

Chapter 5 details the implementations and execution with results of three 
experiments in WSN testbed. First we perform transceiver selection experiment for the 
reliable and fast management network. The second experiment was performed for 
validation of speed and reliability of the wireless management network. The third 
experiment was performed with results for the validation of the experimental network.  

Chapter 6 presents the conclusion of this work and identifies some of the possible 
future improvements.  
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2 Background and Key Enablers 

In this chapter we introduce the background on wireless sensors networks, internet 

protocol and REST architecture. After that we provide a brief overview of already 

existing embedded Operating Systems, well-known WSN hardware platforms and some of 

the already existing WSN experimental testbeds.  

2.1 Wireless Sensor Networks 

In a few years almost every electronic device will be accessible via Internet and our 

environment will be enriched with a large number of sensor nodes that can form Wireless 

Sensor Networks (WSNs). These nodes are typically low power devices equipped with a 

variety of sensors that are able to interact with the physical world. Furthermore, these 

devices are able to interconnect with each other and to communicate with the outside 

world over the Internet.  

In [9] authors define the Wireless Sensor Network as a network of devices, denoted as 
nodes, which can sense the environment and communicate the information gathered from 
the monitored field (e.g., an area or volume) through wireless links. Some of these devices 
are deployed in inaccessible areas, therefore a node does not only have a sensing 
component but also storage, communication and processing capabilities. Nodes in a WSN 
can be mobile or stationary, homogeneous or heterogeneous, and their capabilities can 
vary widely. Moreover, each node in the network can communicate with its neighbours 
and the sink node (edge-router) that allows dissemination of data to other networks. 

Due to the rapid development of sensor nodes, the currently available nodes are 
becoming more sophisticated in terms of CPU power, memory, energy efficiency and 
connectivity. Software, which runs on each node, can be reprogrammed using simplified 
application interfaces (API) for wired or wireless reprogramming.  

When deploying a WSN network, among the standard requirements we typically 
need: network accessibility, content accessibility and network management [10]. 

 

- Network accessibility  

In the WSN every device should be able to communicate to each other without human 

intervention (so-called machine-to-machine concept - M2M) and to interact with an end 

user. To achieve this, every sensor node that constitutes wireless network must support 

simple and unique way of addressing; even more, this type of network should enable that 

every user has direct access to each node in the network. In order to make this feasible, 

WSN must equate with existing computer networks so that every device which supports 
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the same type of addressing can be part of this network. By making each sensor node a 

directly addressable and accessible network entity, the system provides an easy way for 

discovering, controlling and invoking services from the sensor network. Users can interact 

with the system at high level of abstraction using standards-based communication 

technology that blends with the existing stack used by the Internet (HTTP/TCP/IP). In 

addition, nodes that build WSN network will be equipped with multiple communication 

interfaces such as Wi-Fi and Bluetooth low energy (BLE) interface, which will provide an 

even better network accessibility.  

 

- Network management 

Sensor networks should be easy to set up and use even for non-network experts and for 

users without advanced experience in programming. Users who would like to deploy 

sensor network should only need to provide Internet connectivity and source of energy 

while everything else should be automatically configured. That includes automatic 

address allocation and creating sensor network topology based on algorithms for ad hoc 

routing protocols. This self-configured network should be able to detect potential 

problems in network and try to find a solution for the same problems as specified or 

encountered in the past so that the end user will have fewer problems with the network 

structure. Still, advanced users would have options to make their own configuration for 

the entire network and they will be able to create their own static network topology.  

 

- Content accessibility  

Sensor networks are long running distributed computing systems that consist of a 

collection of sensor platforms working together to collect information about various 

phenomena and physical quantities, for instance, wind speed, wind direction, light, 

temperature, humidity and other relevant data according to specific application. In this 

network end users expect to have simple access to nodes and to have the ability to 

retrieve data and metadata from specific sensor node. Creating independent sensor 

network, where user can collect information accurately and reliably, enables building soft 

real-time service platforms such as data analytic, visualization and automation platforms. 

Employing these platforms every user can analyse incoming data, set triggers for real-

time offset detection and create warning services.  

2.2 IEEE 802.15.4 

The IEEE 802.15.4 standard was created for low-power devices that operate in the 868 
MHz, 915 MHz and 2.4 GHz frequency bands [11] and it specifies physical layer (PHY) 
and medium access control sublayer (MAC). This would mean that WSN networks using 
IEEE 802.15.4 can operate in three license-free industrial scientific medical (ISM) 
frequency bands. In the 2003 revision, the data rates supported by this standard were 20, 
40 and 250 kbps respectively to the mentioned frequency bands. Few years later the 2006 
revision improved the maximum data rates of the 868 and 915 MHz bands to support 100 
and 250 kbps as well.  
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The address of a node in IEEE 802.15.4 wireless sensor network can be formed with 
64bit extended or 16bit short address space. The PHY layer provides communication 
between radio transceiver and MAC layer. It provides two main services, PHY data and 
management service. The MAC layer provides a link in between the service specific 
sublayers and the PHY layer. Like the PHY layer, the MAC sublayer also provides two 
services, the MAC data service and the MAC management service [12].   

Standard by itself offers two topology modes, peer-to-peer and star. In the star 
topology all the communication occurs trough the Personal Area Network (PAN) 
coordinator, while in peer-to-peer topology devices communicate directly with each other 
[13]. For the star topology it is specific that it supports two modes; the first one is 
synchronized and the second one is unsynchronized. In the synchronized mode a device 
can track beacons to synchronize with the coordinator. In particular, synchronization is 
good for polling, energy saving and slotted channel access. In unsynchronized mode, on 
the other hand, device can have direct access to the channel immediately when no 
activity has been detected. Data transfer between PAN coordinator and device in all 
topologies of IEEE 802.15.4 networks is always initiated by the device. Leaving control of 
data transmission to the device, energy savings can be maximised and thus extend 
battery life time. 

2.3 IP in Wireless Sensor Networks 

Internet protocol is a connectionless protocol where connection setup is not performed 
and it is not guaranteed that packets will arrive at the destination [14]. The Internet 
Protocol exists in two versions: IPv4 and IPv6. Primarily, IPv6 was introduced to solve 
the problem of the exhaustion of IPv4 addresses. Therefore, longer address space of IPv6 
of 128 bit will provide 1038 addresses, instead of 4×109 possible addresses with the IPv4. 
Adopting IPv6, each device in network will be able to obtain a unique address and will 
be directly accessible avoiding many workarounds such as port mapping, address 
translation and gateways in the WSN.  

Internet Protocol (IP) in particular is good for WSN network because it enables 
interoperability with existing networks that are based on the same protocol. With the IP, 
nodes in WSN network will be able to communicate with each other and the Internet 
without any additional hardware and translation software. As it is depicted in Figure 2.1, 
IP enables interconnection between many devices (e.g. laptops, smartphones, servers, 
etc.) in local networks and the Internet.   

 

Figure 2.1: Interoperability of IP architecture. 
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Additional features of IP protocol: 

 It is already standardized by IETF group 

 It is supported by many existing Operating Systems (OS) including, Linux, OS X, 

Windows, Contiki OS, TinyOS etc. 

 It supports dynamic addressing using Dynamic Host Configuration Protocol 

(DHCP). 

 It enables internet-standard protocol for device management named Simple 

Network Management Protocol (SNMP) 

2.3.1 IPv6 

Internet Protocol Version 6 (IPv6) is the successor of IPv4 as the network protocol for 
the Internet, which addresses most limitations of IPv4. To overcome the decrease of 
unallocated address space and in anticipation that networked devices will vastly 
outnumber conventional computer hosts, IPv6 expands the IP address space from 32 to 
128 bits [15]. To reduce the packet transmission overhead and improve the throughput, 
IPv6 routers do not perform packet fragmentation. Therefore, IPv6 increases the 
maximum transmission unit (MTU) requirement from 576 to 1280 bytes.  

Security in IPv6 network is enabled with IPSec that provides confidentiality, 
authentication and data integrity. Other technical benefits of IPv6 protocols include; 
simplified and expanded use of multicast addressing and optimisation for delivery 
services. Two most important supporting protocols for IPv6 are Internet Control Message 
Protocol (ICMPv6) and Neighbour Discovery Protocol (NDP). 

 
- Internet Control Message Protocol 
ICMPv6 is a successor of ICMP and it is defined in RFC 4443. The main functionalities 
of this protocol are to report errors in processing packets, network diagnostic and other 
inter-layer functions. ICMPv6 messages are classified in two categories, error and 
information messages. They are transported by IPv6 packets with next header value set 
to 58 for their easier identification. 
 
- Neighbour Discovery Protocol 
NDP protocol is used with Internet Protocol version 6 and it operates in the second layer 
of OSI model. This protocol is defined in RFC 4861 and its main functionalities are 
discovering other nodes on the link, determine link layer addresses of other nodes, detect 
duplicated addresses, address prefix discovery etc. To successfully support the listed 
functionalities, NDP defines five ICMPv6 packet types that are: router solicitation, 
router advertisement, neighbour solicitation, neighbour advertisement, and network 
redirects. 

2.3.2 6LoWPAN 

By default IPv6 routers do not perform fragmentation thus demanding the support for 
MTU size of 1280 bytes. Adaption of IPv6 for low power devices that are based on low 
power radio links can thus be challenging. One of the standards defined for low power 
radio links is IEEE 802.15.4 standard and it only supports 127 bytes of maximum 
payload. To address proper solution for this problem 6LoWPAN group has defined an 
adaptation layer that sits between layers 2 and 3 just below the network layer where 
IPv6 is located. 6LoWPAN defines a header encoding to support fragmentation when 
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IPv6 datagrams do not fit within a single frame and additionally compresses IPv6 
headers to reduce the header overhead [11]. 

6LoWPAN is a networking technology, and is used in embedded devices running on a 
microcontroller in the device. There are three different models typically used to embed 
such a wireless protocol solution: single-chip, two-chip and network processor solutions 
[13].   

Single-chip solution is based on SoC radio technology where transceiver and 
microcontroller are integrated together with other components. This solution minimizes 
costs, size and complexity of embedded application.  

In two-chip solution microcontroller and radio transceiver are separated. The protocol 
stack is integrated with application and it is running on a microcontroller. 
Communication with radio transceiver is enabled with serial peripheral interface (SPI). 
This solution is good where application complexity and performance requirements are 
high.  

Finally network processor solution requires microcontroller for the embedded 
application and SoC radio chip for the protocol stack. Communication in between these 
units is enabled over SPI interface. This solution is good for project where minimum 
engineering effort is required.      

2.4 Representational State Transfer (REST) 

Representational State Transfer (REST) is a coordinated set of architectural constraints 
that attempts to minimize latency and network communication while at the same time 
maximizing the independence and scalability of component implementations [8, 16]. 
REST improves network efficiency by enabling cache mechanism and reuse of 
interactions, simplifies system architecture by using uniform interfaces in between 
components, and by adding a layered system style it improves the behaviour for Internet-
scale requirements. In other words, REST is software architecture style for building 
scalable web services.  

Typically, but not always, REST is implemented on Hyper Text Transfer Protocol 
(HTTP) and it is used instead of complex mechanisms such as Remote Procedure Call 
(RPC) or Simple Object Access Protocol (SOAP). To distinguish between resources, 
which are involved in an interaction between components, REST uses resources 
identifiers. All REST components perform actions on representation of a resource that 
consists of a sequence of bytes (content) and representation metadata to describe those 
bytes. For example, using Uniform Resource Identifiers (URI) in web-based applications 
any information that can be named is a potential resource and such resource can be 
called RESTful resource. RESTful is used to refer to web-services that are following the 
REST architecture. 

Primary REST connectors are client and server. The essential difference between the 
two is that a client initiates communication by performing a request, whereas a server 
listens for connections and responds to requests. An important part of REST architecture 
is a well-defined interface to enable communication between components. In particular 
case of HTTP, a control interface is defined by a set of methods such as POST, GET, 
PUT and DELETE.  
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2.5 Constrained Application Protocol (CoAP) 

The Constrained Application Protocol (CoAP) is an application-layer protocol designed 
to provide a REST-like interface, but with a lower cost in terms of bandwidth and 
implementation complexity than HTTP-based REST interfaces [17]. The protocol is 
designed for machine-to-machine (M2M) communication and devices that often have 8-
bit microcontrollers and small amount of RAM and ROM.  

CoAP provides a request/response interaction model between server and client, and 
supports built-in discovery of services and resources. CoAP is very similar to the HTTP 
protocol, because it adopts key concepts of the Web such as URIs resources with REST 
architecture and Internet media types. The main difference in between the two protocols 
is that CoAP uses a compact binary representation designed to be easily parsed and 
UDP transportation protocol instead of TCP.  

To enable communication between server and client, server makes resources available 
under a URL and clients access these resources using methods such as GET, PUT, 
POST, and DELETE. Particularly interesting feature, which cannot be found in HTTP, 
is publish/subscribe mechanism called “observing resources” [18]. Observing resources 
enables push notification messages to the subscribers, whenever the observed resource 
changes. Since HTTP and CoAP share the REST model, they can easily be connected 
using application-agnostic cross-protocol proxies. In such case end user may not even 
notice that he accessed a sensor resource. 

2.6 Operating Systems for WSN platforms 

Unlike traditional operating systems such as Windows, OS X or Linux, the operating 
system for WSN platforms are optimized and tailored to the limited node hardware. 
These WSN operating systems multiplex hardware resources and provide a hardware 
abstraction to make developing of sensor applications simpler and more portable. In the 
WSN research community some of the most widespread operating systems, which are 
presented in more detail in the following, are TinyOS, Contiki, Mantis, and Nano-RK. 
Likewise, many other operating systems for WSN platforms exist. 

 
A. TinyOS [19] is an open source, component based, and application-specific 

operating system targeting wireless sensor networks. TinyOS is an embedded 
operating system written in nesC programming language and it was developed in 
collaboration between University Berkley, Intel Research and Crossbow 
Technology. Footprint of the base the TinyOS can fit in less than 400 bytes of 
memory. TinyOS enables concurrent programs execution using full multitask 
solution with memory protection mechanism. Component library includes many 
features such as network protocols, distributed services, sensor drivers, and data 
acquisition tools. Latest version of TinyOS was upgraded with DIP 
(Dissemination Information Package), a new dissemination protocol for sensor 
networks. DIP is a data discovery and dissemination protocol that scales to 
hundreds of values. From the version 2.1.1 TinyOS also provides support for IPv6 
protocol using 6LoWPAN optimization networking. 

 
B. Contiki [20] is a lightweight open source OS for networked, memory-constrained 

system with particular focus on low-power WSN platforms. Contiki OS is written 
using C programing language and it was developed by Adam Dunkels in 2002. 
Contiki is a highly portable OS and it is built around an event-driven kernel and 
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provides preemptive multitasking that can be used at the individual process level. 
A typical Contiki footprint can fit in 40 kilobytes of ROM, which requires less 
than 2 kilobytes of RAM. Building blocks of OS include features like: 
multitasking kernel, preemptive multithreading, proto-threads, TCP/IP 
networking, IPv6, a Graphical User Interface, a web browser, a personal web 
server, a simple telnet client, and virtual network computing. To enable 
interconnection with already existing IP networks Contiki employs uIP solution. 
uIP is written in C and it supports TCP, UDP, ICMP, and IPv4/v6 protocols. 
Likewise, Contiki provides another lightweight layered protocol stack, called Rime 
[21], which is used for network-based communication and supports both best 
effort and reliable transmission. Applications are allowed to implement protocols 
that are not present in the Rime stack. 

 
C. MANTIS [22] stands for MultimodAl system for NeTworks of In-situ wireless 

Sensors. It provides a new multithreaded cross-platform embedded operating 
system for wireless sensor networks. MANTIS is a lightweight and energy efficient 
operating system that is written in C programming language. Base footprint 
requires 14kB of ROM and less than 500 bytes of RAM. Key features of full OS 
image are energy-efficient scheduler for duty-cycling, a scheduler for preemptive 
multi-thread, and a network stack. Moreover, it supports diverse WSN platforms 
and remote management of sensor nodes through dynamic programming. 
Supporting additional hardware components on WSN platforms require 
component specific drivers implementation. In MANTIS each driver should 
implement four functions dev_read, dev_write, dev_mode and devo_ioctl. 
Afterwards, component can be used and controlled in the user application. 

 
D. Nano-RK [23] is a reservation-based multitasking real-time OS for WSNs 

developed by Carnegie Mellon University in 2005. Nano-RK currently runs on the 
FireFly Sensor Networking Platform as well as the MICAz “motes” and is written 
using C programming language. Nano-RK includes a light-weight kernel (RK) 
with rich set of features, such as multitasking, multi-hop networking, priority-
based scheduling, timeliness, extended WSN lifetime, application resource usage 
limits, and small footprint. Typical footprint of Nano-RK requires 2 Kb of RAM 
and 18 Kb of ROM. To ensure that task deadline is met, Nano-RK supports 
fixed-priority multitasking. Because dynamic allocation in Nano-RK is disallowed, 
before the application deployment developer must set task and reservation 
priorities. Nano-RK enables hard and soft real-time applications by the means of 
different real-time scheduling algorithms and for real-time data streaming over 
the network it supports socket-like abstraction. 

2.7 WSN Hardware Platforms 

A typical WSN hardware platform consists of sensors and actuators to enable interaction 
with the physical world; a communication interface to simplify the interaction; a 
processing unit that interacts with the peripheral components, usually a low-power 
microcontroller with a memory size of few kB; and a power source which can be a battery 
or other alternatives such as solar cells. Today, various WSN hardware platforms exist 
and new ones are being developed that are more sophisticated in terms of processing 
power, energy consumption and communication interfaces. An overview of few recently 
used platforms in experimental testbeds is given in this selection. 
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A. The VESNA platform [10] (developed by SensorLab) has been primarily 
designed for sensor network applications, although its modularity and 
expandability make it useful for other purposes, too. Due to its modular design 
and the availability of expansion connectors, it can be easily adapted to many 
applications. The main module of the node hosting the microcontroller is called 
the Sensor Node Core (SNC) module. The VESNA sensor platform is depicted in 
Figure 2.2. VESNA employs a STM32F103Rx microcontroller, having a 32-bit 
ARM Cortex-M3 processor core. The microcontroller has 64 kB of RAM and 512 
kB of flash memory, and it supports a variety of interfaces: USB, RS232, UART, 
IrDA, SPI, I2C, SD/MMC, 12 bit ADC, DAC. The core module of the VESNA 
platform has two expansion connectors: one designed for Sensor Node Radio 
(SNR) modules, and one for Sensor Node Expansion (SNE) designed for various 
purposes. As radio expansion modules, sub-gigahertz and 2.4 GHz-band 
transceivers are available (e.g. using Texas Instruments CC1101/CC2500 and 
Atmel AT86RF212/RF231 radio transceivers), but alternatively other modules 
can be used as add-on boards connected to the radio connector. Examples of 
various expansion boards are the debugging and programming board, Ethernet to 
serial converter, WiFi to serial converter, proto-board modules and the additional 
power supply module. 

 
 

 

Figure 2.2: VESNA sensor platform. 

 

B. The TelosB [24], sometimes also referred to as the TmoteSky, is developed and 
published to the research community by UC Berkley. It consists of MSP430 
microcontroller and CC2420 radio transceiver. Microcontroller operates at 8MHz 
and has a 10kB of RAM and a 48kB of flash. For the data logging it supports 
1MB external flash, where all the measurements can be stored. With an 
integrated on-board antenna, single-chip CC2420 radio transceiver that is IEEE 
802.15.4 and ZigBee compliant provides up to 125 m of cover range. Power 
lifetime on the batteries is around 3 to 6 months depending on how often the 
radio transceiver is used for network communication. Its components cannot be 
enhanced, restricting use from its better radio transceiver/antenna to reach a 
longer distance. TelosB/TmoteSky is ultra-low-power wireless module designed to 
enable cutting-edge experimentation for the research community.  
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Figure 2.3: TelosB mote open-source platform. 

 

C. The iSense [25] modular hardware and software platform for wireless networks is 
intended for both industry and research applications. In order to fit a wide 
variety of application demands the iSense hardware platform is made up of a 
number of modules that can be combined in various ways. Like this, functionality 
can be easily rearranged, and new features can be added by appending new 
modules. The hardware is arranged around the iSense CoreModule with an IEEE 
802.15.4 compliant radio, a 32-bit RISC controller running at 16MHz, 128kB of 
memory and 512 kB of Flash, a highly accurate clock and a switchable power 
regulator. Moreover, CoreModule can be combined with a number of sensor 
modules (e.g. a thermometer, a light sensor, an accelerometer, a passive infrared 
sensor, a magnetometer and camera), different power sources including a solar 
power solution, a gateway and special purpose modules. With this platform 
application specific sensor nodes can be constructed just by putting together the 
required hardware modules. The hardware is supplemented with a modular 
operating and networking firmware that is based on object oriented programming. 
  

 

Figure 2.4: iSense modular platform. 
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D. The MPR2400 MICAz [26] WSN platform was designed specifically for 
embedded sensor networks. MICAz is based on the low-power microcontroller 
Atmel ATmega128L, which runs MoteWorks from its internal flash memory. 
MoteWorks enables the development of custom sensor applications and it is 
optimized for low-power battery operated sensor devices. The MICAz platform 
comes with 802.15.4 compliant radio transceiver that operates at 2.4 GHz. 
Likewise, processor board (MPR2400) can be configured to simultaneously run 
sensor application and the network communications stack. The 51-pin expansion 
connector supports Analog Inputs, Digital I/O, I2C, SPI and UART interfaces. 
These interfaces make it easy to connect to a wide variety of sensor and data 
acquisition boards. Also, custom sensor and data acquisition boards are offered 
with this platform. Most common usage of MICAz platform is in indoor building 
monitoring, where high speed sensor data is required and in a large scale sensor 
networks. 

 

Figure 2.5: MICAz mote. 

 

2.8 WSN Experimental Testbeds 

Recently, an increasing emphasis is being put on experimentally validated research, and a 
fair number of sensor-based testbeds exist such as Motelab [27], w-iLab.t [28], TWIST 
[29] and WISEBED [7], just to name a few. According to a recent survey [1], existing 
sensor-based testbeds are located mostly indoor and nodes are controlled through a wired 
management network such as USB or Ethernet. A number of sensor-based testbeds 
located outdoor such as SmartSantander [2], CitySense [30] and LOG-a-TEC [4] also 
exist. 

Generally we distinguish two generic types of testbeds consisting of constrained 
devices such as sensor nodes. The first type is focusing on monitoring of some phenomena 
such as energy consumption, humidity, temperature, motion, sound, gases, etc. These 
kinds of testbeds are typically used by researchers to automatically acquire some data 
about the phenomena under study. Examples of such testbeds are SmartSantander and 
CitySense. The second type is aimed at experimentation and refers to sensor-based 
testbeds that support the development of new communication and networking technology 
by enabling experimentation with new algorithms and protocols. Motelab, TWIST and 
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LOG-a-TEC are examples of such testbeds. The following paragraphs survey a few of 
already existing monitoring and experimental WSN testbeds in more detail. 
 

 
A. MoteLab [27] is a sensor network testbed platform developed at Harvard 

University. MoteLab consists of a 30 Ethernet-connected MICAz “motes” that are 
distributed across 3 floors inside the laboratory building. These sensor nodes are 
connected to the central server, which enables reprogramming, logging and web-
interface for interaction with the nodes. Employing the web technologies it 
enables management of experiments and direct access to the nodes, even during 
the experiment. Besides, it is one of the first experimental testbeds that simplifies 
and accelerates application deployment and development by consolidating access 
to a large number of experimental devices. MoteLab web interface allows both 
local and remote users access to the testbed, and its scheduling and quota system 
ensure fair sharing of the resources. 

 

B. TWIST [29] is a wireless sensor network testbed developed at the Technische 
Universität Berlin. TWIST is one of the largest academic testbeds. It consists of 
204 motes, 102 of them are TelosB motes and the other 102 are eyesIFX. Motes 
are distributed inside the building across 3 floors, with the distance between them 
of 3m, forming a grid pattern. Over the USB hubs sensor motes are connected to 
several super nodes that ensure Ethernet backbone to the central server and 
control station. TWIST provides experiments with heterogeneous node platforms, 
support for flat and hierarchical setups and power supply control of the nodes.   
To enable experimentation control several Python scripts runs locally on the 
super nodes and provide functionalities like sensor node programming, executing  
power control, collecting debug and application data, and more. Invocation of 
these scripts is done by the control station using ssh network protocol. 

 

C. w-iLab.t [28] is a generic wireless sensor testbed developed at the iMinds 
research institute. w-iLab.t is deployed at two different locations; 200 sensor 
nodes are distributed across iMinds premises in Ghent and additional 60 in w-
iLab.t Zwijnaarde 5 km away from the first location. At the first location each 
node out of 200 is comprised of an embedded PC and Tmote Sky motes, while at 
the second location instead of Tmote Sky they employed RM090 wireless sensor 
module. w-iLab.t enables experiments with 802.11 a/b/g, 802.15.4 and 802.15.1 
interfaces, moreover it allows flexible evaluation of hardware and software. To 
enable control and scheduling of experiments w-iLab.t uses web server and for 
root access to the devices it uses ssh network protocol.  

 

D. CitySense [30] is an urban wireless sensor network testbed developed by 
researchers at Harvard University and BBN Technologies. The testbed consists of 
100 embedded PCs with 802.11 a/b/g interfaces and various sensors used for 
weather and air-pollution monitoring. Nodes are deployed across the city on the 
light poles and buildings. For the management network they are using wireless 
network-based on Ubiquiti SR9 802.11 b/g mini modules. CitySense enables 
experiments with the various mesh routing protocols and urban environmental 
monitoring. Testbed management and experiment control is done by executing 
commands using ssh network protocol while on the other hand, collected sensor 
data can be accessed using the web server. 
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E. LOG-a-TEC [31] is an experimental wireless sensor network testbed developed 
by the SensorLab group at the Jožef Stefan institute (JSI). The testbed consists 
of 70-80 low power VESNA sensor nodes distributed at two different locations in 
the town Logatec and at the JSI campus. In both locations VESNA nodes are 
used, mostly deployed outdoors on the light poles and building facades. The 
testbed employs 802.15.4 interface for the wireless management network that 
enables remote monitoring, reconfiguration and experimentation. LOG-a-TEC 
enables experiments with various sensors for environmental monitoring, smarts 
grids and cognitive radio experimentation. LOG-a-TEC provides two ways of 
testbed management. First, is using non-RESTful web interface that enables 
monitoring, controlling and reprogramming of WSN devices and the second is 
using Python library that enables running of more sophisticated experiments such 
as spectrum sensing or power-allocation experiments. 
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Chapter 3 

3 Architecture Design of WSN Testbed 

In this chapter we first identify challenges and requirements for setting up an 
experimental testbed consisting of constrained devices. Then we propose architecture for 
a single-tier testbed for experimental research and development that can be (i) deployed 
on an ad-hoc basis in any target environment and (ii) configured and controlled using 
simple RESTful APIs.  

 

3.1 Challenges 

Current off-the shelf WSN solutions tend to be unreliable and unfit for fast and scalable 
deployments for experimental purposes, while custom built solutions by professionals 
require significant time, effort and investment costs in infrastructure. In this respect, the 
design of a new wireless sensor network with optimal configuration to enable 
experimenting with new applications in for instance smart cities, industrial and building 
automation environments has to consider a set of challenges outlined in the following 
subsections [32]. 

3.1.1 Resource-aware Experimentation   

The first challenge regards the WSN devices which are typically small in size and cheap. 
This leads to a series of limitations such as limited memory, lower processing power and 
battery-based powering. Given these constraints, the first main challenge is designing an 
architecture that enables experimentation with as low overhead as possible. This 
translates into being able to control, debug and reconfigure the network under test using 
as few bits sent over the air as possible since it is known that the wireless interface 
consumes most of the energy of such devices [33]. Additionally, the time required for 
configuring an experiment should be reasonable. Therefore, besides minimizing the bits 
transferred over the air, the architecture should also reduce complex operations such as 
large and slow memory relocations on the embedded device itself whenever possible. 

3.1.2 Context-aware Deployment and Configuration   

The second challenge regards the target deployment of the experimental ad-hoc network. 
In real life operating environments indoor and outdoor alike, there are two main factors 
that affect the wireless connectivity, (i) the pre-existing wireless infrastructure as a 
potential source of interference and (ii) varying set-ups consisting of moving obstacles 
(e.g. people, furniture, merchandise) that may lead to significant variations in multi-path 
propagation. Assuming these constraints are given before setting up the testbed, it must 
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be possible to determine, for instance via spectrum sensing, the occupied bands and 
channels as well as the feasible location for deploying the sensors and the distance 
between them. Then, the deployed network has to be configured accordingly not to 
interfere with the existing wireless infrastructure and ensure that the chosen frequency 
band allows operational connections. 

3.1.3 Remote Control and Optimization   

After deploying the testbed and appropriately configuring it on the spot, it should be 
possible to assess the functioning and reliability of the resulting. A cost efficient and 
simplest way of realizing this is to support remote control and optimization through an 
easy to use API. One example of such implementation is to allow remote control over the 
web and exposing an easy to use RESTful API. This lowers the skill level required to 
write scripts for visualization, monitoring and configuring the testbed remotely compared 
to the traditional command line approaches. 

3.2 Requirements for Remote Control and Optimization 

Following the challenges identified in Section 3.1, we identified a set of common 
requirements and design goals for increasingly capable remote handling of the testbed 
architecture. By addressing these requirements, the resulting testbed architecture should 
lower the efforts in development and experimental evaluation of custom-built wireless 
solutions in challenging real-life environments and thus increase the innovation potential 
in wireless sensor networks. 

3.2.1 Remote Monitoring and Diagnosis   

The first important requirement from the architecture point of view for an ad-hoc testbed 
is to enable the remote monitoring of the radio and network parameters as well as 
diagnosis of the overall network. The nodes in remotely installed testbeds have to be able 
to provide on request information about their status, health and current configuration. 
For instance, ping times and round-trip times might be requested each few minutes from 
the remote monitoring application that assesses the overall performance of the tuned 
network. Based on these statistics, the network performance can be improved manually 
or automatically. Micro controller and surrounding temperature might be an important 
parameter to monitor, especially in industrial production environments, as these affect 
the performance and the lifetime of the nodes. An overall network configuration such as 
routing or neighbourhood tables as well as current protocol configurations should be 
provided on demand for performing remote diagnosis. 

3.2.2 Remote Parameter Tuning 

The second requirement from the architecture perspective for an ad-hoc testbed is to 
enable the remote tuning of parameters. These parameters can be grouped into (i) 
transceiver parameters such as transmit power, operating frequency and operating 
bandwidth, and (ii) protocol parameters such as contention window size for CSMA, time 
to live value for IP or the ceiling of the exponential back-off in TCP. These are all 
important for the remote configuration and tuning of the custom wireless solution. For 
instance, if the connection between two deployed nodes proves to be systematically 
unreliable, perhaps the transmit power has to be increased or the transmit channel 
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changed. After applying the changes, the behaviour of new configuration can be re-
evaluated. 

Remote parameter tuning can be performed at run-time or by rebooting the 
corresponding node so that the changes take effect. For the sake of experimentation 
speed, run-time reconfiguration should be supported for as many parameters as possible. 
This is also convenient for advanced algorithm development where dynamic interference 
mitigation or power allocation settings are chosen automatically because the system can 
perform timely and agile changes. For instance, with advanced power control algorithms 
such as the one proposed in [34], a run-time reconfigurable system can adapt the 
transmit power and thus maintain good links in dynamic environments where 
transmitters and obstacles appear and disappear. 

3.2.3 Over the Air Software Updates and Upgrades 

Next requirement from the architecture point of view for an ad-hoc testbed is to enable 
efficient over the air software updates and upgrades. Such updates are useful for 
debugging, upgrading existing functionality such as a protocol setup or adding new 
functionality [35]. In [10], the authors identify three types of required updates by 
experimental testbeds: OS/firmware upgrades, driver updates and application updates. 
OS/firmware upgrades are expected to occur when new versions of software are released 
or when a major flaw is discovered and needs immediate fixing. However, for 
experimental setups that require software modification, the need for over the air 
programming (OTAP) might be more frequent. In many cases, these upgrades can be 
achieved using dynamic linking, thus avoiding the need for realizing a full OS/firmware 
upgrade. In such cases, the file sent to the nodes of the testbed is relatively small 
compared to the full OS/firmware image. Performing a full OS/firmware upload for each 
application tends to be uneconomical. 

3.2.4 Modular Stack Reconfiguration 

The fourth requirement for the architecture of an ad-hoc testbed is to enable modular 
stack reconfiguration. While the first three requirements are mandatory for such systems, 
this last requirement is only needed for advanced users that, besides tuning and 
configuring protocol parameters, intend to reconfigure the protocols that form a stack as 
part of the design and development of their custom wireless solution. This can also be 
done via remote reprogramming in case the protocol stack has a monolithic 
implementation, however it is less energy efficient and more time consuming due to the 
higher number of bits sent over the air.  

For modular implementations of protocol stacks such as the standards based IPv4/6 
implementations in PicoMESH1 or the clean-slate CRime [36], the entire protocol stack 
can be reconfigured on the node provided all the modules have been pre-installed. For 
instance, one can easily switch between IPv4 and IPv6 by just changing the layer three 
protocol implementation module while the MAC and transport layer protocols remain the 
same. This requirement supports the development of efficient communication protocols 
and algorithms that are generic and are independent of the operating system. 
Additionally, the experimental evaluation of cross layer [37] and cognitive networking 
[36] techniques can be made much easier with such functionality. 

                                                                                                                                                                                                         

1 PicoMESH repository - https://github.com/tass-belgium/picotcp-tinyOS 
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3.2.5 Mapping of Challenges and Requirements 

Table 3-1 presents mapping between the challenges identified in Section 3.1 and the 
architecture requirements as identified in Section 3.2. It can be seen that by supporting 
remote monitoring and configuration as well as over the air reprogramming, more 
resource aware experimentation is facilitated, particularly because of the convenience of 
the final solution. Additionally, with careful design and optimal engineering, the number 
of bits sent over the air for experimentation can be reduced. Remote control and 
optimization can be achieved by enabling remote parameter tuning and software 
updates/upgrades. 

Table 3.1: Requirements and challenges. 
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Resource-aware 

experimentation 
X X  X 

Context-aware 

deployment and 

configuration 

X X  X 

Remote control and 

optimization 
X X X  

 

3.3 Proposed System Architecture 

In this section, we propose an architecture that enables a fully reconfigurable wireless 
sensor network testbed. The proposed architecture based on the requirements from Table 
3.1 is able to reconfigure and support easy experimentation and testing of standard 
protocol stacks (i.e. uIPv4 and uIPv6) as well as non-standardized clean-slate protocol 
stacks (e.g. configured using Rime). The parameters of the protocol stacks can be 
remotely reconfigured through the RESTful API. Additionally, we are able to fully 
reconfigure clean slate protocol stacks at run-time. The architecture enables easy set-up 
of the network by using a protocol that automatically sets up a multi-hop network (i.e. 
RPL protocol) and auto-configure the management network, thus requiring no manual 
work [32]. This makes each experimental device a directly and uniquely addressable and 
accessible network entity. It enables reconfiguration and experimentation by using 
RESTful interactions with each individual node. 

The resulting system topology is presented in Figure 3.1 and is comprised of two 
parts. On the right hand side we have the resulting experimental network and on the left 
hand side we have end-users that can easily over the Internet interact with the 
experimental WSN device using the REST architecture.  
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Figure 3.1: System architecture. 

The experimental network consists of experimental devices and a router/sink block. 
Experimental devices in proposed architecture to avoid interference and simplify device 
management, should support two network interfaces one for management and the second 
for experimental network. While the experimental devices are only meant for performing 
experimentation, the router/sink has two functionalities. The first one is to seamlessly 
integrate experimental devices into the existing network, thus providing connection to 
the end-users via wired or wireless backbone link. The second functionality is to enable 
clustering of devices. Regarding the number of routers supported by the architecture, 
experimental devices can be organized with one router in flat or with many routers in 
hierarchical architecture. 

This architecture provides an approach to describe, discover and invoke services from 
heterogeneous sensor networks. The two major advantages of such architecture are (i) 
that wireless sensor nodes can be deployed in an ad-hoc manner and (ii) that it enables 
custom configuration of the wireless solution in the actual real-life environment rather 
than in a simulator or a lab. This implies that with the proposed architecture it becomes 
much easier than before to develop and test a WSN-based application. 

3.3.1 WSN Node Architecture 

Figure 3.2 depicts the block scheme of an experimental WSN node. The node has to 
support (i) one or more configurable wireless transceivers for experimentation and/or 
management, (ii) a configurable protocol stack and/or a modular and configurable 
protocol stack and (iii) a monitoring, control and composition block. Additionally, there 
must be support for software upgrades to address the requirements in Section 3.2.3. The 
support for software upgrades can be realized in several ways, for instance by using 
custom firmware or operating system support. This aspect has been investigated in 
several recent works [35] which discuss in detail the possible designs and their trade-offs. 
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Figure 3.2: Block scheme of an experimental WSN node. 

3.3.2 Reprograming and Reconfiguration Models 

The basic reprogramming model involves the use of a bootloader to replace the whole 
image on the node (i.e. flash the node)[38], [39] and is the most suitable for OS/firmware 
upgrades. With multiple images it is possible to support multiple applications or 
implement failure recovery. This approach is used by all the wired testbeds to upload 
new experiments. The main drawback is large transfer size which is less suitable for 
wireless management networks. One way to reduce the transfer size is to use image 
compression [40].  

More granular upgrades that may sometimes be more suitable for wireless 
management networks can be achieved by implementing functionality as applications, 
ran by the core OS. Virtual machine interpreters such as Mate [41] or Java based VM 
[42] have high overhead due to interpreted execution. This can be avoided by deploying 
applications as modules in native code. Pre-linked modules have near zero size overhead 
compared to monolithic application. Dynamically linked modules can be deployed to 
nodes with different OS images [43], [42]. However the overhead of additional metadata 
can be relatively large compared to the application code/data size, so the users should 
check if the overhead is acceptable.  

As discussed in Section 3.2.3, for some application updates it is not needed to update 
the application program code. Component-based development requires splitting a 
monolithic OS image with application(s) into multiple components, which communicate 
via well-defined interfaces [44]. For instance, RemoWare permits, beside reconfiguration, 
also the addition of new components via dynamic linking [44]. 

 

3.3.3 Configurable Radio Transceivers   

The configurable wireless transceiver has to support parameter reconfiguration (i.e. tx 
power, etc.) as discussed in Section 3.2.2. This means it has to be carefully selected to be 
closer to a white-box transceiver that can be reconfigured and can support a large variety 
of protocol stacks rather than to a black-box one where the transceiver and the protocol 
stack are tightly integrated and prevent configurations. In some cases, having a single 
transceiver may be sufficient. This implies that the management network (i.e. the 
network that performs monitoring, parameter tuning, etc.) is the same as the 
experimental network (i.e. the network to be optimized and tuned for the custom 
deployment). In this situation we are dealing with in-band monitoring and configuration. 

To avoid in-band management that may interfere with the experiment, the 
architecture also supports two separate transceivers. In this situation, the management 
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and experimental networks can be clearly separated and configured to operate on non-
overlapping channels or even different frequency bands, thus isolating the effects of the 
management-related communication overhead from the target production wireless 
network that is subject to customization. This is a preferable solution in most cases, 
especially when the experimental stack is not fully stable and needs remote debugging. If 
a single transceiver was used, a reprogramming error can also compromise the 
management network, and the remote access to the experimental network can be 
hindered. 

Cheap and low-power transceivers tend to have limited support for frequency range. 
For instance, only operation in SRD 868 MHz or ISM 2.4 GHz bands may be supported, 
but not both at the same time by such a transceiver. In order to support both frequency 
bands and also additional ones such as TVWS (UHF, VHF-High, VHF-Low), more 
transceivers have to be added to the sensor node. This offers more flexibility in 
developing the solution but poses some additional hardware and software integration 
challenges. The alternative is to use more powerful software defined radios, however, for 
the time being, these are more expensive and not designed for operation with constrained 
devices (even though Embedded USRP is slowly changing this). As a generic 
architecture, we also have to consider the support of several interfaces to enable 
flexibility in experimentation. 

3.3.4 Configurable Protocol Stack and/or Modular and Configurable 

Protocol Stack 

An open (i.e. white-box) and configurable protocol stack running on top a configurable 
transceiver is the minimal architectural support for addressing the requirements from 
Section 3.2.2. For efficient developing and evaluation of variations of the same protocol 
or enabling advanced experimentation with cross-layer and cognitive networking 
techniques as discussed in Section 3.2.4, a modular and configurable protocol stack is 
desirable. These stacks should be able to run with minimum custom firmware as well as 
to integrate with existing operating systems for embedded devices. The firmware and/or 
operating system should enable software upgrades as discussed in Section 3.2.3, thus 
adopting existing solutions such as discussed in [35]. In some cases, using remote 
reconfiguration, the entire experiment can be remotely reconfigured. For instance, using 
run-time reconfiguration, the entire protocol stack can be reconfigured without flashing 
the node. 

3.3.5 Monitoring, Composition and Control Block   

The monitoring, control and composition block must be able to configure the transceivers 
and protocol stacks as described in Section 3.2. To enable the experimentation and 
control parts of the testbed, it must provide an easy way of remote monitoring, 
configuring and composing network resources. This is typically achieved with a simple 
API that follows the RESTful architecture. Monitoring can be simplified using the simple 
RESTful solution, end-user of the testbed can change the sampling rate of the sensor or 
can change the size of the buffer that stores the measurements in a very few steps. Also 
experimental parameters such as the frequency at which packets are sent, the number of 
retransmissions, transmitting power, receive channel filter bandwidth and carrier sense 
indicator, could be easily controlled. 
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Chapter 4 

4 Implementation of RESTful-Based 

Experimental Testbed 

In this chapter we discuss the design choices for implementation of a single-tier WSN 

experimental testbed, reprogramming and reconfiguration models used, and CoAP 

handlers for the management of RESTful-based experimental testbed. 

 

4.1 Testbed Deployment 

When building a new testbed from scratch, one is faced with selecting a desired hardware 
platform and a supported operating system. Heterogeneous testbeds may consist of 
several different hardware platforms. The challenges and requirements discussed in 
Section 3 should be taken into account when selecting the hardware and OS. For 
instance, with some operating systems it will be impossible to support dynamic linking 
and/or run time reconfiguration. When upgrading an already existing testbed, the 
guidelines presented in the previous sections still hold, however, there may be already 
existing constraints on the choice of hardware and software.  

4.1.1 LOG-a-TEC 2.0 RESTful Testbed 

The proposed reference implementation builds on our previous experience with outdoor 
testbed deployment and experimentation with spectrum sensing and cognitive radio in 
the LOG-a-TEC testbed [4]. As a result, we use the VESNA sensor platform which is a 
low power modular platform with several options for transceiver selection and the 
Contiki OS which is a commonly used sensor operating system that also enables modular 
updates rather than just monolithic updates. The VESNA core board contains a 32-bit 
ARM Cortex-M3 microcontroller running at up to 72 MHz CPU clock. It has 64 kB of 
RAM and 512kB of flash memory. Additional non-volatile memory is provided by a 
micro SD card. 

As it is depicted in Figure 4.1, 20 VESNA sensor nodes are mounted at the campus of 
the Jožef Stefan Institute in Ljubljana, Slovenia. They cover approximately 3000 m2 of 
in-door and out-door space. This testbed is currently used for experiments with packet-
based transmissions and dynamic network stack composition in wireless sensor networks. 
Each node in the testbed contains two radio transceivers, one bare bone for experimental 
network and one IEEE 802.15.4 compliant for the management network. Nodes at JSI 
campus are running the Contiki operating system version 2.7 with a dual, composable 
networking stack. A 6LoWPAN network using the IEEE 802.15.4 radio is used to control 
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and reprogram the nodes. Both networks can be operated simultaneously without 
interfering with each other as they operate at different frequencies. Each node is directly 
accessible from the Internet using IPv6. 

 

 

Figure 4.1: Example deployment of the ad-hoc testbed. 

To provide remote testbed access from the Internet, we adopted a very lightweight 
approach. In our implementation the router depicted in Figure 3.2 shares a small part of 
the address space of the wide-area network. WSN router only forwards datagrams on the 
network layer, provides the Internet connectivity and does not include any gateway 
functionality. For making each experimental device directly addressable and to avoid the 
problem with lack of IPv4 address space, we used IPv6 with 6LoWPAN optimization. 
The alternative would be to use an application layer gateway such as used in ZigBee, 
ZWave, Xbee, etc. architectures [15]. However, these gateways are complex to design and 
manage, and would introduce an additional tier in the system architecture. 

The management network enables monitoring, controlling and composing network 
functionality by using the CoAP protocol on top of UDP/IPv6/6LoWPAN. CoAP 
includes several HTTP functionalities re-designed for constrained devices such as WSN 
devices and it is built on top of User Datagram Protocol (UDP)[45]. Therefore it has 
smaller overhead and enables multicast group communication. To support all the 
required monitoring, control and composition functionality, we developed a set of CoAP 
handlers that enable wireless experimenters to remotely play with the testbed. These are 
detailed in Section 4.4. 

For the experimental network we use the fully modular and reconfigurable CRime 
stack [36]. The ProtoStack [36] tool has been developed to support modular protocol 
development that would enable easy experimentation with multi-hop routing algorithms 
using also learned link characteristic for the routing decision - thus enabling cognitive 
networking experimentation. As ProtoStack relies on the Contiki OS, the extension has 
to use this operating system. For the management network we use Contiki’s 
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6LowPAN/IPv6 stack with RPL. This complies with the architectural specifications in 
Section 3.3. The RPL protocol is used for automatic management network discovery and 
configuration. To enable two protocol stacks running in parallel, we used our previous 
dual-stack Contiki adaptation [10].  

4.2 VESNA Platform with Dual-stack ContikiOS 

The VESNA platform had a pre-existing dual radio extension board with the following 
options: TI CC1101 (868 MHz), TI CC2500 (2.4 GHz), AT86RF231 (2.4 GHz) and 
AT86RF212 (868 MHz) transceivers. Note that the extension board can support an 
Atmel and a TI transceiver at the same time, however it cannot support two Atmels or 
two TIs at the same time. For our implementation we decided to use the TI CC1101 (868 
MHz) for the experimental network. This is an open and reconfigurable transceiver with 
a very minimal implementation on basic MAC functionalities that complies with the 
architectural specification in Section 3.3.1. And as second transceiver, we use the 
AT86RF231 (2.4 GHz) for the management network. This is an IEEE 802.15.4 
compatible transceiver suitable for low power 6LoWPAN networks.  

While the hardware set-up already supported dual stack (one for management and 
one for experimentation), a solution for a dual-stack OS had to be developed. Contiki OS 
includes two protocol stacks, one based on uIPv6 that can be configured as 
6LowPAN/uIPv6/UDP/CoAP and the second protocol stack is custom and is referred to 
as Rime. The two stacks can run one at a time and not in parallel. 6LowPAN assumes an 
IEEE 802.15.4 compatible transceiver and since only the Atmel transceivers comply with 
this, the most natural decision was to consider the Atmel transceivers for the 
management network and the TI transceivers for the experimental network. 

 

Figure 4.2: Dual stack Contiki using 6LowPAN for the management network. 

Next, we extended the Contiki OS with dual stack operation. The original code uses 
compile-time defined network layers. Some layers are used by both Rime and uIP at the 
same time (see framer nullmac in Figure 4.2), so we modified the networking code to 
explicitly pass information about which network stack the current packet belongs to. It 
should be noted that in a single stack Contiki, Rime uses 2 bytes for node network 
address, while uIP requires 8 bytes. To keep Rime packet small, thus maintaining the 
low power consumption of the Rime stack, we modified Contiki to permit different 
network address size for Rime and uIPv6 packets respectively.  

Finally, we integrated the new, composable Rime (CRime) [36] network stack that 
enables reconfigurable protocol stacks in the Contiki OS and configured the operating 
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system to support the 6LoWPAN-based management network and the CRime-based 
experimental network in parallel as depicted in Figure 4.2. 

4.3 Software Upgrades, Updates and Reconfiguration 

Software upgrades require a bootloader running on the VESNA platform and a large 
image to be sent to the node over the management network. In the case under 
investigation, the full image of the monolithic dual stack is in the range of 400 kB as 
shown in Table 4.1. This image corresponds to a particular application (i.e. single 
experiment) and it needs to be changed if the experiment requires another application 
(i.e. flash the node).  

Table 4.1: Approach transfer size. 

Approach transfer size 
[B] 

useful size 
[B] 

overhead 
[%] 

Monolithic dual stack image 410900 410900 0 

Hello-world ELF app 1752 399 78 

Trickle RIME ELF app 11316 3930 65 

Monolithic dual stack config. packet 1635-7937 1635-7937 0 

 
In order to support minor updates of drivers and applications, we used dynamic 

loading through the Contiki ELF (Executable and Linkable Format) loader module. In 
order to support dynamically reprogrammable network stacks, we investigated the 
possibility of transferring new stack compositions, each representing a new experiment. 
This requires splitting the application into two parts. 

The first part, called core, is responsible for loading the minimal Contiki OS with 
added ELF loader functionality. This part of the node firmware is not changed during 
reprogramming. It is responsible for downloading the ELF application through the 
management network and to dynamically link it with the core OS. To implement it, we 
had to include the base Contiki image with uIPv6, TCP/UDP and CoAP as well as, also 
support for: (1) SD card driver and Contiki Coffee FS; (2) utility application to receive 
ELF file from the network and write it to a file; (3) ELF loader (generic and CPU 
architecture specific part) to do actual ELF file relocation; and (4) the symbol table 
which stores the addresses and names of all core OS functions, which might be called by 
the ELF application. 

The second part is the ELF application. The application calls functions exported by 
the core OS, and is compiled as a standard ELF file. The relocation of ELF application 
as it is depicted in Figure 4.3 uses metadata within the ELF file to find the locations of 
unresolved data addresses, function calls, code execution jumps etc. Each such location is 
then overwritten with the resolved value, calculated from metadata, known locations of 
application sections and core function.  

Part of the monolithic image from the previous approach could be loaded as an ELF 
application and the same result could be achieved as in OS upgrade. In this case we 
would need to split monolithic dual stack image into two parts, core OS (with uIP 
management network) and ELF application (with CRime experimental network). In 
addition to that we have the option to leave some code parts, used only by CRime, in 
the core OS. In particular, we decided to leave the TI CC radio driver in the core OS. As 
that particular piece of code is already stable, we expect it will not require frequent 
updates. This resulted in about 50% smaller ELF application file. 
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Figure 4.3: Loading ELF application. 

We looked at the size of the file to be transferred to the nodes over the air for the 
very simple hello-world application and for a more complex trickle stack. The size of the 
helloworld ELF file is 1.7 kB while the size for the trickle ELF file is 11 kB as listed in 
Table 4.1. The trickle ELF application is small compared to the full OS image, but it 
still has a significant overhead due to the ELF file metadata. 

4.4 CoAP Handlers Using REST Principles 

All the enablers for monitoring, control and composition are implemented as CoAP 
handlers and developed using REST principles. This section describes the procedures that 
use these handlers to address the requirements in Section 3.2. 

4.4.1 Remote Monitoring and Diagnosis 

Figure 4.4 presents a sequence diagram that uses CoAP handlers for remote monitoring 
and diagnosis to perform device hardware and experiment monitoring. First, the 
/hardware/status is used to receive transceiver configuration setup such as current 
channel, transmit power, sampling rate, etc. Then the node sends the settings to the 
user. Second, after the experiment is started, /crime/stack push is used to receive 
periodic status messages of the running experiment containing the values of LQI and 
RSSI of the last received packet. Then, after the completion of the experiment, 
/crime/get_prr is used to retrieve PRR of the overall experiment. The node then sends 
this data to the user. As the last event, using the /crime/get_results, the experimenter 
will retrieve the logged results (RSSI, LQI), stored on the SD card. The node will send 
the data to the user in chunks if the size of the data exceeds the maximum size of a 
packet payload. 
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Figure 4.4: Remote monitoring. 

4.4.2 Remote Parameter Tuning 

For remote parameter tuning we implemented several CoAP handlers. Figure 4.5 
presents a sequence diagram that uses two of them to adjust the channel and 
transmission power of transceivers. First, the /ti_cc/set_power is used with the desired 
power level as a parameter. The experimenter (script) sends it to the target node which 
acknowledges the request. Then, the /ti_cc/set_chn is sent with a numeric value 
specifying the desired channel. The node acknowledges also this request. Third and last, 
using the /ti_cc/restart handler triggers the reboot of the transceiver. After the reboot, 
the new values, which have been written in the appropriate registries by the routines 
called by the CoAP handlers, take effect, thus appropriately configuring the transceiver. 

In our implementation, several parameter tuning handlers have also been developed 
for the management network. Instead of referring to the TI transceiver, the requests refer 
to the Atmel transceiver. This is implemented in a RESTful architecture by changing 
/ti/ into /atmel/ in the CoAP request. 

 

 

 

Figure 4.5: Remote configuration of channel and transmission power. 
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4.4.3 Over the Air Software Updates and Upgrades 

Figure 4.6 presents a sequence diagram of CoAP handlers for over the air software 
updates and upgrades to perform a full operating system (OS) update, and Figure 4.7 
presents a sequence diagram that uses the same CoAP handlers for driver and 
application updates. 

First, in Figure 4.6, the /firmware/card_format is used if users want to wipe any 
existing data from the SD card. The node acknowledges this request. Second, the 
/firmware/header is used to upload a new OS image metadata such as size and CRC32 
of the image and slot ID where image will be stored on the card. The node also 
acknowledges this request. Third, the /firmware/upload is used to upload the new OS 
image. The node acknowledges each transferred chunk of data.  

 

 

Figure 4.6: Full operating system/firmware upgrade. 

Fourth, the /fimware/card slot is used to select the memory slot of the SD card from 
which the new OS image has to be loaded. The node will also acknowledge this request. 
And fifth, the /firmware/reboot is used to reboot the device and start the loading process 
of the OS image from the SD card into the flash. 

The first operation in Figure 4.7 uses the /elf/header handler that uploads the 
application meta-data such as file size, CRC32 and application name. The node 
acknowledges this request. Second, the /elf/upload is used to upload the application file. 
The node acknowledges each transferred chunk of data. After the relocation is done, the 
node sends the application ID. Third and fourth, the /elf/start or /elf/stop is used with 
application ID as parameter to start or stop the application. The node acknowledges also 
these requests. 
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Figure 4.7: Application or drivers update. 

4.4.4 Modular Stack Reconfiguration 

Figure 4.8 presents a sequence diagram of CoAP handlers for the modular stack 
reconfiguration to perform runtime modular stack reconfiguration using JSON 
configuration messages. First, the /crime/upload is used to upload the JSON stack 
configuration message. The node acknowledges successful upload. Second, the /crime/init 
is used to initialize the stack. The node acknowledges the request after the stack is 
initialized. Third, the /crime/start handler is used to trigger experiment with the desired 
sample rate and number of packets that should be transmitted. The node also 
acknowledges this request. Finally, as fourth, the /crime/stop is used to stop the running 
experiment. 

 

Figure 4.8: Run-time stack reconfiguration. 
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5 Performance Evaluation of WSN 

Testbed 

In this chapter we introduce architecture validation and evaluation. First we start with 
evaluation of radio transceivers for the wireless management network. Next, the usage of 
experimental testbed is demonstrated by performing two sets of experiments, one for the 
evaluation of the management network and the second for the evaluation of the 
experimental network. Likewise, other types of experiments can also be developed and 
performed on the infrastructure, but they are beyond the scope of this thesis. 

5.1 Evaluation of Radio Transceivers for the Management 

Network 

For wireless network design it has been shown [46] that the reception probability of the 
nodes in the network has three regions. In the first region, also called the effective region, 
the packet success rate is above 90%. In the second region, also referred to as transitional 
region, the packet success rate falls off smoothly but exhibits high variation. In the third 
region, also referred to as clear region, the packet success rate is below 10%. The 
boundaries of the three regions and the fall of the success rate are determined by several 
factors, among which are the frequency band and the used transceiver. 

In Section 4.2, we narrowed down the candidate transceivers supporting the 
management network to two IEEE 802.15.4 Atmel transceivers: AT86RF231 (2.4 GHz) 
and AT86RF212 (868 MHz). The first step in evaluating these transceivers was to 
determine the three operating regions. The experiment was carried out in a 55 meters 
long corridor of a long building where several WiFi access points are also active. Figure 
5.1 plots the three regions empirically determined in our experiments for the AT86RF231 
(2.4 GHz) transceiver. The tests show that the effective region goes up to 22 m in the 
line of sight conditions (no obstacles in the corridor). Additionally, we performed 
experiments to understand how the throughput is affected by the packet rate as shown in 
Figure 5.2. The results show that rates exceeding 70 packets per second lead to packet 
losses.  

The plots for the reception success rate as a function of distance for the AT86RF212 
(868 MHz) transceiver are depicted in Figure 5.3, with the effective region ending at 28 
m. Due to the hardware limitation, with this transceiver we managed to achieve 
application rate of 41 packets per second with 100% of packet success rate. 
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Figure 5.1: Reception success rate as a function of a distance for the AT86RF231                   
(2.4 GHz) transceiver, with application rate of 70 packet/s. 

 
 
 
 
 

 

Figure 5.2: Reception success rate as a function of application packet rate for the 
AT86RF231 (2.4 GHz) transceiver, at the distance of 16 m. 
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Figure 5.3: Reception success rate as a function of a distance for the AT86RF212      
(868 MHz) transceiver, with application rate of 40 packet/s. 

After determining the effective region for the two transceivers under consideration, we 
looked at the application transfer rates and various settings that influence these. For 
instance, by using the header compression enabled by 6LoWPAN, the application 
payload can be increased thus maximizing the data rate. Figure 5.4 presents the 
experimental setup used for measuring the uplink/downlink throughput. The CoAP 
client was mimicking reprogramming functionality by sending large files for 
reprogramming the nodes running CoAP server and data collection functionality by 
requesting (randomly generated) data from the nodes. The CoAP clients are located on a 
wired IPv4/IPv6 network, then use a gateway towards the border router which has a 
wireless management interface for the nodes. The links between the nodes and the border 
router were within the effective regions, hence reliable. 

 

Figure 5.4: Experiment setup. 

We performed two different types of experiments, upload and download for two 
different sets of radio transceivers Atmel AT86RF212 at 868 MHz (Table 5.1) and 
AT86RF231 at 2.4 GHz(Table 5.2). Each type of the experiment had five different steps 
and with each step we were increasing the size of the data (i.e. file) to be transmitted 
from 128 to 256000 bytes. To get more reliable results we repeated each step 10 times 
and then we calculated the average throughput value. With respect to the upload and 
download we performed 100 measurements per radio transceiver. From the results in 
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Tables 5.1 and 5.2, it can be seen that AT86RF231 is achieving higher data throughput 
and the links are more stable. 

In our evaluation we only considered packets that contain payload data, avoiding 
acknowledgment messages that are sent for each packet and that are not relevant for the 
application data rate. We decided to use HC01 and HC02 compression for 6LoWPAN 
because if the CoAP client is accessing the testbed from a different network subnet, the 
IPv6 address will not be fully compressed in any case. Packet fragmentation was 
disabled. MAC header compression was not used, because it is supported only by the 
AT86RF212 MAC. As a note, there are several configurations and tunings that can be 
performed with such an evaluation. Configurations in the Contiki OS, the used drivers 
and the point from which the client is accessing the node influence the final performance 
of the wireless management network.  

Table 5.1: Upload and Download troughput of AT86RF212. 

Size  
[bytes] 

Download time 
[seconds] 

Upload time 
[seconds] 

Download 
throughput [kbps] 

Upload 
throughput [kbps] 

128 0.185 0.167 5.405 5.988 

1280 1.705 1.655 5.865 6.042 

12800 16.614 16.666 6.019 6.000 

128000 176.324 168.800 5.671 5.924 

256000 346.699 339.327 5.768 5.894 

 

Table 5.2: Upload and Download troughput of AT86RF212. 

Size  
[bytes] 

Download time 
[seconds] 

Upload time 
[seconds] 

Download 
throughput [kbps] 

Upload 
throughput [kbps] 

128 0.086 0.069 11.627 14.492 

1280 0.686 0.694 14.577 14.409 

12800 6.673 6.965 14.985 14.357 

128000 68.191 68.899 14.664 14.513 

256000 139.696 139.241 14.316 14.363 

 
Tables 5.1 and 5.2 are summarizing results where packets with 64 bytes of application 

payload have been used. To analyze different approaches described in Section 3.3.2, for 
instance to transfer 256000 bytes, which could correspond for instance to a new firmware 
image for full OS reprograming, 140 seconds are needed when using AT86RF231 and 347 
seconds when using AT86RF212. For the dynamic loading of a simple application or run-
time reconfiguration using a non-optimal JSON format is the image of 1000 bytes, less 
than a second is needed with AT86RF231 and under 2 seconds with AT86RF212 - thus 
being more economic for the wireless management network. 

 

5.2 Evaluation of the Wireless Management Network 

The wireless management network of the testbed will have to provide multi-hop 
communication to reach all the nodes and ensure a well-connected network so that all 
nodes can be reached for control, reconfiguration, data collection and software upgrade 
purposes as discussed in Section 3. According to the existing literature, characterizing a 
multihop wireless network and designing the desired management network is not a trivial 
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task and some links may as well operate beyond the effective region, i.e. in the 
transitional region.  

With respect to the transitional region, it has been shown [47] that (1) the link 
quality is not correlated with distance, and (2) the extent of the transitional region seems 
to depend on the environment (e.g. outdoor, indoor, presence of obstacles), and the radio 
hardware characteristics. Additional observations made by the same authors that are 
particularly relevant for this evaluation: (1) link quality is anisotropic; (2) links with very 
low or very high average PRRs (Packet Reception Ratio) are more stable than links with 
moderate average; (3) over short time spans, links may experience high temporal 
correlation in packets reception, which leads to short periods of 0% PRR or 100% PRR; 
(4) the colocation of 802.15.4 and 802.11b networks affects transmission in both networks 
due to interference, but the transmission in 802.11b networks is less affected; (5) the co-
location of IEEE 802.15.4 and 802.15.1 (Bluetooth) networks affects mostly the 
transmissions in the IEEE 802.15.4 network; and (6) the colocation of IEEE 802.15.4 
networks and domestic appliances can significantly affect the transmission in the IEEE 
802.15.4 networks. 

In order to realize a wireless management network that services well the testbed by 
being able to reach all nodes at any time, providing good throughputs to enable 
configuring, controlling and upgrading the network, it would be highly desirable that as 
many as possible of the links forming the network are in the effective region. For the ones 
belonging to the transitional region, it is desirable that they are connected to the core of 
the network via more than one (highly varying) link. In order to achieve this, the 
candidate transceivers forming the network have to be evaluated and the operating 
environment and topology also need to be taken into consideration.  

Figure 5.5: Network topology of managment network. 

For the validation purposes of management network we decided to perform 
uplink/downlink experiments on the deployed WSN experimental testbed that use 
AT86RF231 transceiver at 2.4 GHz for the management network, described in Section 
4.1. WSN experimental nodes were configured with IPv6 address, CoAP protocol and 
each node was reachable on a single-hop link from WSN sink-router, as it is depicted in 
Figure 5.5. As a testing client application we developed a Python script using CoAP 
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library that was performing uplink/downlink experiments with each node in the network, 
and calculating the transmission time and the throughput.  

 

Table 5.3: Uplink/downlink data rate of 15 Nodes. 
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Node 01 9,40 9,22 8,86 9,13 9,19 9,06 8,54 8,83 8,92 9,01 

Node 02 9,42 9,06 9,50 9,18 9,28 8,95 9,30 9,01 9,32 9,05 

Node 03 9,58 9,18 9,64 9,25 9,52 9,07 9,59 9,20 9,36 9,14 

Node 04 9,50 9,22 8,46 9,28 9,44 9,27 9,40 9,05 9,35 9,18 

Node 05 9,48 9,11 9,59 8,67 9,60 9,02 9,53 8,93 9,11 9,10 

Node 06 9,57 9,23 9,61 9,25 8,92 9,11 9,29 9,23 9,40 9,14 

Node 07 9,66 9,21 9,61 9,21 9,54 9,06 9,37 8,93 9,47 9,21 

Node 08 9,52 9,12 9,59 8,76 9,47 8,95 9,42 9,14 9,46 9,04 

Node 09 9,46 9,09 9,54 9,16 9,37 8,96 9,15 8,88 8,91 8,65 

Node 10 7,97 9,11 7,25 9,00 7,98 8,93 8,58 9,06 8,43 8,98 

Node 11 8,64 8,21 6,30 8,60 8,96 8,64 8,77 8,84 8,62 8,78 

Node 12 9,56 9,17 9,59 9,24 9,35 9,14 9,51 9,12 9,55 9,07 

Node 13 9,20 9,05 8,88 9,19 8,95 9,08 8,61 9,02 8,89 9,00 

Node 14 9,11 8,86 9,27 8,31 8,64 8,71 8,33 8,58 8,30 8,92 

Node 15 8,99 6,87 8,55 8,42 8,17 8,15 6,32 6,74 6,14 6,51 

 
 

 

Figure 5.6: Average uplink/downlink data rate with standard deviation of 50 experiments 
per node. 
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The experiment had five different steps and with each step we were increasing the size of 

the data (i.e. file) to be transmitted between 1280 and 409600 bytes. In order to get more 

reliable results, each step was repeated 5 times and mean average was calculated shown 

in Table 5.3, resulting in total of 50 experiments per node. Total average 

uplink/downlink data rate with standard deviation for 15 selected nodes are shown in 

Figure 5.6. We can see that for some nodes such as Node 15 we are getting lower rates 

because of the interfering objects that are between the router and the node. 

Table 5.4 presents the sizes of selected files or messages that have to be transferred 
over the air for reprogramming or reconfiguring the network. For full OS reprogramming, 
the total number of bytes to be sent over the air is 410,900. If we only send a partial 
code update, the ELF file for the trickle application in this case, the total transfer size is 
11,316 bytes. An average message (i.e. CoAP handler) for transceiver reconfiguration 
requires transferring 32 bytes while a JSON message for reconfiguring the entire protocol 
stack also amounts to transferring several thousands of bytes, in this case, 7937 bytes. 

 

Table 5.4: Transfer size. 

Use case Transfer size [byte] 

Monolithic dual stack image 410900 

Trickle RIME ELF app 11316 

Transceiver reconfiguration 32 

Modular stack reconfiguration 7937 

 

The measured average data rate and packet loss of 15 selected nodes in the testbed 
was 9,02 kbps and 7.054 % of packets, respectively, between the nodes that are 10-30 
meters apart as the case in our deployment. Based on these values, the second column in 
Table 5.5 shows the average transfer times required for the messages listed in Table 5.4. 
The last column of the table presents node local measurements of the relocation time 
necessary to find the locations of unresolved function or data addresses, function calls, 
code execution jumps, etc. As expected, the results confirm that both transfer and 
relocation times for software upgrades are significantly larger than for reconfiguration 
messages. Furthermore, while the transfer time for full OS update is larger than for 
partial code updates, the relocation is smaller for the first (68 sec) versus the second (239 
sec). If we consider transfer and relocation time in the context of setting up a testbed for 
subsequent experimenting, it can be seen that preparation of an experiment can take 
from a few seconds to a few minutes, depending on the complexity of the experiment 
which, in most cases, is proportional to the number or required configuration messages. 

 

Table 5.5: Application deployment time. 

Use case Transfer time [s] Relocation time [s] 

Monolithic dual stack image 355 68 

Trickle RIME ELF app 9 239 

Transceiver reconfiguration <1 <1 

Modular stack reconfiguration 6 <3.0 
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5.3 Evaluation of Experimental Network  

As an example used to evaluate the experimental network of the deployed testbed, we 
decided to perform RSSI-based Rings Overlap Localization algorithm [48]. Localization 
algorithms can be divided into two categories: range-based localization technology and 
range-free localization technology. Range-based localization depends on the assumption 
that the absolute distance between a sender and a receiver can be estimated by received 
signal strength or by the time-of-flight of the wireless signal from the sender to the 
receiver. While range-free algorithms depend on proximity sensing or connectivity 
information and they never try to estimate the absolute point-to-point distance based on 
received signal strength. The selected algorithm is based on range-based technology and 
the goal of this algorithm is that each WSN node the (receiver/transmitter) uses 
overlapping rings to narrow down the possible area in which transmitter/receiver is 
located.  
 

1
1

2

0

0

Rx1
Rx2

Tx Location

 

Figure 5.7: Transmitter localization using Rings Overlap localization algorithm. 

Each receiver that is included in the algorithm, based on the received strength of the 
RSSI signal, calculates the possible distance at which the transmitter is located. As it is 
depicted in Figure 5.7, as a result of the algorithm we obtain a ring around each receiver 
where the estimation of the transmitter location increases from zero to one. With each 
additional intersection of rings, the estimated location of transmitter increases by one.   

In our experimental scenario using the CRime protocol stack we decided to configure 
simple broadcast stack on the node N. 10. In the experiment we will refer to this node as 
the transmitter. On the other hand, we developed a Python script using the CoAP 
library that could subscribe to the observable handlers of the nodes N. 06, N. 07, N. 11 
and N. 13 and log the RSSI measurements of each received packet. We will refer to these 
nodes as receivers. After we successfully managed to collect RSSI measurements using 
CoAP handlers described in Section 4.4.1, we used a MATLAB script to create Figure 
5.8 depicting rings of estimated location. As it can be seen using just RSSI data and 
Gauss Kruger coordinates of each receiver, we got the estimation of transmitter location 
with an error of 7.5 meters.  

As the next step we decided to try to improve the estimated location. With the same 
data that had collected in the first step we used additional information such as antenna 
pattern and surrounding obstacles that were interfering the received signal. As a result 
that is depicted in Figure 5.9, we managed to reduce the estimation error from 7.5 to 1.1 
meters.  
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Figure 5.8: Localization of transmitter using only RSSI data, no knowledge about radio 
environment (error~7.5m). 

 

Figure 5.9: Transmitter localization using RSSI with some knowledge of radio 
environment (error~1.1m). 
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Chapter 6 

6 Conclusions 

In this thesis, we argue that an architecture for fully reconfigurable wireless sensor 
network testbed, suitable for fast on-site deployment, demonstration and testing in real 
operating environment, can foster the adoption of wireless sensor networks in industrial 
and building automation environments. These environments pose specific challenges that 
we translated to concrete requirements and design goals that a testbed has to fulfil with 
respect to remote operation in a user-friendly way. In summary, such testbed should be 
comprised of WSN nodes supporting configurable transceiver(s), configurable and 
possibly modular protocol stack(s), and a monitoring, control and composition block; 
furthermore, they should include support for remote software and firmware upgrades and 
reconfigurations. To this end, different modes of remote programming / configuration 
may be applicable to different types of experimentation / operation, also depending on 
the basic design of the sensor nodes and their capabilities. As a result to the list of 
requirements, we propose experimental architecture for a single-tier WSN testbed for 
experimentally driven research and development that can be easily deployed on an ad-
hoc basis in any target environment and remotely configured and controlled using simple 
RESTful APIs. 

In the reference implementation we presented the operation of developed CoAP 
handlers for monitoring, control and composition. The implemented dual stack network 
enables to remotely upgrade the nodes of the testbed without the need for wired 
infrastructure and still benefit from a management network that is separated from the 
experimental network rather than piggybacking on it. The improved application 
throughput, together with the smaller application level updates / reconfiguration size 
significantly shorten the time required to set up a new experiment 

 We validated and evaluated the operation of management and experimental 
networks in terms of achieved average data rate, packet loss ratio and application 
deployment time under different modes of supported remote reprogramming / 
reconfiguration. In particular, we showed that in some cases a trade-off needs to be 
carefully considered between the time needed for the transfer of a new firmware image 
and the relocation time for the software upgrade. 

6.1 Future Work 

While we achieved all the initially set goals of the thesis, we present in this section some 
guidelines for possible future work and improvements of the proposed architecture, the 
deployed WSN testbed and for future experiments. 
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The first step in improving the proposed architecture would be in complementing the 
existing set of RESTful CoAP handlers with some that would simplify monitoring and 
control of more sophisticated experiments. 

Regarding the deployed experimental testbed, uplink and downlink throughput of the 
management network could be significantly improved by employing the HC01 and HC02 
packet compressions that are already part of Contiki OS. With these compressions we 
could in theory improve the throughput by 30-40 % compared to results obtained in the 
experiment described in Section 5.2. 

Future work on the experimental side could improve the existing localization 
experiment, described in Section 5.3, to support real-time localization of a transmitter or 
a receiver. Probably more important, though, we are planning to adopt few static and 
mobile routing algorithms for the CRime library that will exploit cross-layer RSSI, LQI 
and PRR information for finding the best single-hop and multi-hop paths that can 
subsequently be used in designing and executing new types of experiments. 
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