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Abstract—In this paper we propose a methodology for the
experimental evaluation of a simple yet efficient power allocation
game on a real-world outdoor experimental testbed. We adapt
the existing theoretical framework and the ProActive Power
Update (PAPU) algorithm to suit the constraints imposed by
the LOG-a-TEC low-cost reconfigurable testbed. The resulting
framework is implemented and evaluated in the ISM 2.4 GHz
band. We study the effects of the empirical parameter estimation
on the best response and players’ strategies which represent the
Nash equilibra. Our results show that for a certain cost range,
the system can reach Nash equilibria. The equilibria and the
convergence time are strongly influenced by each player’s cost
but also by the channel gains.

I. INTRODUCTION

The necessity for more efficient use of radio spectrum is
increasing due to the increased number of wireless devices
such as smart phones and tablets, and the increasing volume of
data transfer generated by apps such as Farmville, Facebook,
etc. One solution to the efficient spectrum usage problem is to
control the interference. The lack of interference coordination
causes low link quality and energy waste thus leading to
inefficient use of the radio resources. In order to cater for this,
a wide range of methods have been developed. For instance, a
plethora of algorithms and protocols for optimizing channel
and power allocation such as [1]–[6] have been proposed.
These algorithms have in common the use of concepts and
tools from two very innovative and fertile fields: Cognitive
Radio (CR) and Game Theory (GT).

Cognitive Radio technology is seen as the key enabler for
efficient use of radio resources [7]. Future wireless networks
will exhibit various degrees of CR behaviour. In a spectrum co-
existence scenario, the participating nodes may be configured
to have cognitive capabilities. CR devices can observe their op-
erating environment and become aware of their situation, make
in situ decisions according to their observations, anticipations
and experiences, and then execute intelligent adaptations to
maximize their utility subject to constraints [8].

The transmitters are actually decision makers that can freely
choose their own resource allocation policies while selfishly
maximizing their transmission rates. This resource allocation
problem can be modeled as a game in which CR interactions
are represented as strategic interactions: each player’s payoff
depends on the other players’ actions. Game Theory (GT) has

emerged as an effective framework for CR interaction analysis
as shown in several papers such as [9]–[12].

Game theoretic approach in CR has been thus far pre-
dominantly used in fully controlled environments of computer
simulations to provide the proof of concept. Experimentation
facilities play an important role in the transition of technology
from concept to prototype. Requirements for an open platform
allowing experimentation with cognitive radios have been
outlined in [13]. Several large CR testbeds such as CORAL,
ORBIT, CORNET and CREW [8] have been deployed in the
US and Europe. These are often built using off-the-shelf equip-
ment such as TmoteSky1, Universal Software Radio Peripheral
(USRP)2, but can also be based on custom made hardware
platforms such as CORAL [14], the imec sensing engine3

and the VErsatile platform for Sensor Network Applications
(VESNA)4. The majority of experiments performed on these
platforms to date focus on spectrum sensing.

While theoretical frameworks and computational simula-
tions abound, the experimental investigation of the behaviour
and performance of resource allocation algorithms is scarce.
In this paper, we propose a methodology for the experimental
evaluation of a simple yet efficient non-cooperative power
allocation game on a real-world outdoor experimental testbed.
We adopt the theoretical framework and the corresponding
algorithm proposed in [15] and then we adapt this framework
and algorithm to suite empirical evaluations and also define
a power control protocol. The resulting framework is imple-
mented and evaluated on the LOG-a-TEC [16] [17] experi-
mentation facility with the reconfigurable nodes operating in a
single channel in the ISM 2.4 GHz band. We study the effects
of the empirical parameter estimation on the best response,
player’s strategies which represent the Nash equilibra.

The rest of the paper is organized as follows: Section II
presents the problem formulation and the proposed method-
ology for experimental evaluation. Section III describes the
experimental setup while Section IV presents the adaptations
required by the theoretical framework. Section V elaborates on
the empirical parameter determination, Section VI discusses

1http://www.eecs.harvard.edu/∼konrad/projects/shimmer/references/
tmote-sky-datasheet.pdf

2http://www.ni.com/usrp/
3http://www.imec.be/ScientificReport/SR2010/2010/1159118.html
4http://sensorlab.ijs.si/hardware.html
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the results while Section VII concludes the paper.

II. PROBLEM STATEMENT AND METHODOLOGY

In [18], the authors propose a theoretical framework for
a non-cooperative game-theoretic power control scheme for
wireless and ad-hoc networks. In [15], the authors reformulate
the problem by also considering energy efficiency alongside
with interference and propose the ProActive Power Update
(PAPU) algorithm. Simulation results showed that PAPU can
utilize energy more efficiently by sacrificing a small amount
of network utility compared to the Asynchronous Distributed
Pricing (ADP) protocol proposed in [18].

The power allocation game proposed in [15] and adopted in
this paper is formulated as follows. Given a wireless network
of N transmit-receive pairs (Txi-Rxi), where a ”pair” is
referred to as a ”player”, the objective is to find stable points of
power allocation for each player such that the players’ global
utility is maximum while the cumulated power levels are kept
to a minimum.

More formally, given a set of N players, N = {1, 2, ..., N},
and their corresponding power allocation profile P =
{p1, p2, ..., pN}, the utility function of each player is given
by:

ui = log(1 +
hiipi

n0 +
1
B

∑
j 6=i

hjipj
)− cipi (1)

where pi, pj are the transmit powers of players i and j, hii

is the direct gain, hji is the channel gain between transmitter
j and receiver i, B is the total channel bandwidth and n0 is
the noise power. For simplicity and in accordance to [15], we
consider B=1. Now, the objective is to maximize the global
utility function (2a), while minimizing the globally allocated
power (2b) where pi ∈ [0, Pmax

i ].

max
∑
i

ui (2a)

min
∑
i

pi (2b)

Note that the considered theoretical framework is designed
for non-cooperative power allocation games, meaning that
the decisions are taken autonomously by the CRs (i.e. no
coalition is made for decision making purposes). Yet, non-
cooperative does not mean non-collaborative; a certain amount
of signalling/communication among the devices is assumed
in this case (there are games for which this may not be
necessary). From the GT perspective, in a non-cooperative
game [19] what the players know is the game (i.e. the players,
payoff function, the set of available strategies, the payoff
values at each iteration), but they do not know in advance
what actions the other players will take.

In the evaluations performed in a simulation environment
[15], the values for the direct gain, the cross gains, the
transmitted power and noise were chosen conveniently to pro-
vide the proof of concept. Communication and reconfiguration
delay were not taken into account. In order to provide more
insights into how such a game would perform in a more

realistic environment and to provide empirical validation for
the theoretical framework, we adopt the theoretical framework
and the PAPU algorithm proposed in [15] and propose a
methodology that enables studying the effects of the empir-
ical parameter estimation on the best response and player’s
strategies.

Validation of theoretical models in real-world set-ups poses
several constraints that are most often testbed specific. The
methodology employed for investigating the feasibility of
experimenting with interference mitigation based on the power
allocation game consisted of:
• Identification of the experimental set-up and the con-

straints.
• Adaptation of the theoretical framework for the use in a

testbed rather than in a simulation scenario.
• Empirical determination of the values of parameters such

as channel gain.
• Implementation and experimental evaluation.

III. EXPERIMENTAL SET-UP

The cognitive radio experimentation facilities of the LOG-
a-TEC5 testbed [20] consist of 50 VESNA devices divided
into two clusters of 25 nodes, one located in the Logatec city
center and the other located in the Logatec industrial zone.
The testbed consists of three types of nodes, i.e. UHF receivers
operating at 470 - 862 MHz and transceivers operating at 868
MHz and 2.4 GHz ISM bands [16] [21].

The constraints imposed by the testbed are as follows:
• Topological - The topology of the testbed is determined

by the alignment of the public light poles on which the
sensor nodes are mounted. The theoretical framework
behind PAPU assumes that the cross gains are signif-
icantly smaller than the direct gains. If this constraint
is not satisfied then the game might not converge. This
constraint and the topology of the testbed narrows down
the choice for the location of the players.

• Transmission capability - The testbed is able to transmit
on one channel at a time, therefore limiting the type of
games that can be supported to single channel ones.

• Power levels - The nodes’ CC2500 transceivers support
discrete power levels. Unlike in the theoretical frame-
work, where continuous power levels are considered, the
empirical game has to be adjusted to one of the associated
power levels specified by the radio chip. This clearly
affects players’ strategies.

• Sensing - The nodes of the testbed use energy detec-
tion for spectrum sensing. This simple method cannot
distinguish between different types of detected signals
(i.e. it can not accurately detect spread spectrum signals).
As a result, the accuracy of the measurements is lower,
therefore the best responses of the users are misguided
by the errors.

• Delay - The delay for setting up a transmission or a sens-
ing vary depending on the nodes, since the management

5http://log-a-tec.eu/cr.html
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network through which this setup is conducted is wireless.
Typical values for this setting are from 1 to 3 seconds.
The delay affects the speed of the game, thus the time
required to converge.

• Synchronization - The nodes of the testbed do not
use a clock synchronization protocol, therefore the lack
of synchronization has to be taken into account when
designing and implementing the game.

• Calibration - The low cost nodes are not calibrated,
therefore a setting of -0 dBm transmission power might
result in a slight shift of the level of the actual transmitted
power. This affects the final strategies of the players.

Considering the theoretical framework behind PAPU and the
constraints imposed by the LOG-a-TEC testbed we define the
interference-aware power control game between two players
operating at 2.4 GHz, in the industrial zone cluster. The power
levels set for the VESNA nodes in LOG-a-TEC follows: [0,
-2, -4, -6, -8, -10, -12, -14, -16, -18, -20, -22, -24, -26,
-28, -30] dBm. The two players are transmit-receive pairs
coexisting in the same area, as depicted in Fig. 1. Player 1
is formed by the Tx-Rx pair Node25-Node2 whereas player
2 is formed by Node16-Node17. The distances between the
nodes are: d(TX1, RX1) ≈ 50m, d(TX2, RX2) ≈ 65m,
d(TX2, RX1) ≈ 230m, d(TX1, RX2) ≈ 150m.

Fig. 1. Inter-network interference between wireless systems where hij is the
channel gain between transmitter i and receiver j. Arrows point to sensor node
location. Numbers in arrows are location identifiers.

IV. THE ADAPTATION OF THE THEORETICAL FRAMEWORK

The best response of any of the players involved in the game
is given by [15]:

bi(p−i) =
1

ci
−

∑
j 6=i

hjipj + n0

hii
=

1

ci
− I + n0

hii
(3)

where bi(p−i) represents the best response of player i given
the current state of the game (the power profile for all other
players is denoted by p−i), ci represents player i’s energy cost,
I represents the interference at the receiver, hij are the channel
gains, pj is the transmitted power for all the other players and
n0 is the noise. In typical controlled evaluation setups, such as
simulators, the values for hji and pj are chosen conveniently.
A testbed allows the study of the game when these parameters
are constrained by the environment and acquired in a realistic

environment. As a result, the following adapted expressions
are used in the experimental evaluation:

bi(p−i) =
1

ci
−

∑
j 6=i

hjipj + n0

h′ii

=
1

ci
− Prmeasuredi− Puseful

h′ii

(4)

bi(p−i) =
1

ci
−

∑
j 6=i

hjipj + n0

h′ii

=
1

ci
−

Prmeasured|pi=0

h′ii

(5)

where h′ii stands for the measured or the measurement-
based estimation of the direct gain, Prmeasuredi stands for
the received power measured by player i when player i is
also transmitting (pi 6= 0), Puseful stands for the estimated
useful power received by Rxi when Txi is transmitting, and
Prmeasured|pi=0 stands for the received power measured by
player i when player i’s transmitter is silent (pi = 0).

For the entire system to be stable, the PAPU algorithm must
converge to a Nash equilibrium. The convergence issue studied
in [15] gives the following condition for the convergence and
stability of PAPU:

|hji

hii
| < 1

N
, i = 1, ..., N (6)

Eq. (6) is a decisive factor when choosing the topology on
which the power allocation game is implemented. If Eq. (6)
is not fulfilled for all players, there will be no strategy profile
that will satisfy the players.

In the theoretical case, considering Eq. (3), an equilibrium
is reached in the game when pi(t − 1) = pi(t) for all
players at once. However, in practice, where pi can take only
discrete values, and, in a real environment is very unlikely
to have two best responses equal to each other, therefore a
more robust stopping criterion is needed in order to determine
the equilibrium. In this study, the criterion is given by the
following condition: |bi−k(p−i) − bi(p−i)| < Pth, where
k = 0, 1, 2, 3, 4 and Pth stands for the threshold power used
to compensate for the environment dynamics. Usually, after
reaching the NE, the best responses do not change. In other
words, we use a queue of the last four best responses, and, if
the absolute value of the difference between the most recent
best response and the ones in the queue is less that a threshold,
we consider that the system has reached the equilibrium. The
selected size of the queue is a trade-off between accuracy and
convergence speed. Having a queue of a larger size, would
lead to a higher convergence time, while with a shorter queue,
we make sure that the system is actually stable (i.e. it’s not a
coincidence that the values are similar).

Based on the PAPU algorithm, we define the following
power control protocol:
• Step 1: Each player i initializes its power p0i , p

0
−i.

• Step 2: At time t if player i updates its power, player
i will alert the neighbors that a power change has been
made.

3
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(a) h11 representing the direct gain for player 1 (b) h21 representing the cross gain for player 1

(c) h22 representing the direct gain for player 2 (d) h12 representing the cross gain for player 2

Fig. 2. Long term measurements of the channel gains (from August 5th to August 23rd 2013 between 12:30 - 13:30 - white vertical shading and 21:00 -
22:00 gray vertical shading).

• Step 3: If player i detects a change in other players’
power, it updates its power according to Eq. (5) and alerts
the neighbours of the change.

• Step 4: Player i checks if the Nash equilibrium condition
is satisfied

• Step 5: If the Nash equilibrium condition is satisfied, the
game is stopped.

V. EMPIRICAL PARAMETER DETERMINATION

For the topology presented in Fig.1, the channel estimation
was performed starting from empirical data. The gain between
pairs of nodes has been measured and three strategies for de-
riving their values for the purpose of the PAPU algorithm have
been studied: average gain, instantaneous gain and estimated
gain using Kalman filter.

The procedure for measuring the channel gain was as
follows. First, the receiver Rxj measured the received power
Pnoise knowing that the transmitter Txi was silent. Then, the
receiver measured the received power PRxj

knowing that the
transmitter was transmitting with a given power PTxi

. The

gain was then computed according to:

hij =
PRxj

− Pnoise

PTxi

(7)

Long term channel gain measurements were taken twice
a day, in the afternoon (12:30 - 13:30) and late evening
(21:00 - 22:00), between August 5th and August 23rd 2013.
For channel gain measurements, a signal at 2420MHz with a
bandwidth of 400kHz was used at the transmitter side. The
measured channel gains are represented in a chronological
order in the plots depicted in Fig. 2. The vertical white and
grey shadings represent the afternoon period with white and
the late evening period with gray, respectively.

Looking at Fig. 2a, it can be seen that the average gain
for the pair of nodes representing Player 1 is -74.8 dB with
a standard deviation of 6.952 dB and a dynamic range of
18.9 dB for the 19-day period considered. Even in short term
measurement periods, such as an afternoon or an evening
session, gain variations of over 5 dB can be found. Similar
observations can be made on Figs. 2d−2c for other pairs of
nodes. The gain is highly dynamic and thus using the average
as a means of approximation does not reflect the actual state of
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the channel. Therefore the best-response strategy of the power
allocation game will yield unrealistic values. This method
would be suitable if the gain variation were not considerable
(e.g. < 3 dB), which happens only occasionally.

Alternatively, the instantaneous channel gain could be con-
sidered as input to the best-response strategy. However this
approach can prove expensive in terms of delay and power.
Measuring the channel gain before each step in the game is
time consuming (for the particular case of the LOG-a-TEC
testbed one such measurement takes 5-6 s). It would constitute
a viable choice if the number of required measurements
was small, however this cannot be guaranteed in a power
allocation game. Additionally, the instantaneous channel gain
measurements are prone to measurement errors.

The third approach is to use a simple channel estimation
technique such as the Kalman filter [22]. This method consists
of two steps: the first step is estimating the next measured gain
and the second step represents the correction of the estimated
gain by performing a new gain measurement. The resulting
predicted gain is then computed. The values of the Kalman
predictor for long term measurements are depicted in Fig. 2
in yellow.

For a short history, it approximates well the channel gain
(see first 3-5 measurements in each subfigure) as the dynamic
range of the values fed into the filter is lower, the standard
deviation is small, therefore the Kalman filter performs a more
precise estimation. This is not the case for longer histories
as the wireless channel is known to have high variations
over longer periods. Additionally, in wireless communication,
taking into account old measurements into such decisions as
considered here, is not so useful due to the dynamicity of the
channel.

By analyzing the long-term measurements, three important
conclusions reflecting the implementation of the game have
been drawn. First, the channel gain Kalman predictor approach
is more suitable for the power allocation game because it
compensates for the measurement errors to which the instan-
taneous gain is prone, while also relying on measurement
history. Second, the Kalman filter based estimations of the
gain are more accurate than the average. This is supported
by the smaller values of the mean square error between the
Kalman estimations and the instantaneous value (K−inst) than
the values of the mean square error between average and
instantaneous values (avg−inst) as listed in Table I. Third, we

TABLE I
MEAN SQUARED ERROR FOR THE AVERAGE AND PREDICTED GAIN WITH

RESPECT TO INSTANTANEOUS GAIN
MSE Average gain (avg−inst) Predicted gain (K−inst)

h11 4.65× 10−16 2.14× 10−16

h12 7.9× 10−17 1.59× 10−17

h21 2.8× 10−19 2.55× 10−19

h22 1.26× 10−15 8.11× 10−16

noticed that using a shorter history for the Kalman predictor
yields better results while also having some practical advan-
tages as far as implementation is concerned. At the beginning

of each experiment, the Kalman predictor is used with a history
of 9 most recent measurements.

VI. EXPERIMENTAL RESULTS

A. On how the cost affects the best response of the players

The best response formula used for the empirical evaluation
of the game is given in Eq. 3. The first term of the formula is
the cost ci whose role is to penalize the players for transmitting
with high power. Fig.3a and Fig.3b depict the variation of
the best response as a function of cost for average gains and
different I + n0. It can be seen that the value of the best
response for both players decreases as the cost increases.

The feasible values of the cost also have to take into
account the power levels supported by the testbed. In the case
of LOG-a-TEC, the best response has to respect the lower
boundary of -55 dBm and the upper boundary of 0 dBm.
This constraint excludes a large set of low values of the cost.
Additionally, the experiments have shown that a very high
cost value prevents the game to converge to an equilibrium
making the communication system unstable. This observation
has led to putting a higher boundary on the cost value. In the
worst case scenario observed during the experiments, when
the I+n0 is -84 dBm for the first player and -72 dBm for the
second player, the feasible values for ci lie in the [1000; 4000]
interval.

B. On how the gain affects the best response of the players

The gain is another of the parameters of the best response
formula from Eq. 3 and the logarithmic representation of the
dependency of bi(p−i) to hii is depicted in Fig.4a and Fig.4b.
For a fixed cost of ci = 1000 for both players and the worst
case scenario where the values of I + n0 are −88dBm for
player 1 and −72dBm for player 2, it can be seen that the
best response has high variations for small gains and negligible
variations for high ones.

C. On the Nash Equilibrium

The existence of a Nash equilibrium for the PAPU algorithm
has been proven in [15]. The simulated value of the Nash
equilibrium for PAPU considering ci = 1000 and average
value of the gain is (-0.24, -1.25) represented as a green
bullet in Fig.5a. By introducing more realistic gains based on
the Kalman estimator, the simulated Nash equilibrium slightly
varies around (-0.14, -1.1), as depicted with red triangles in
Fig.5a. In this case the influence of the predicted gains to the
player’s final strategies is evident.

By running the game on the real−world testbed, the Nash
equilibria are much more spread as shown with blue squares
in Fig.5a, mostly due to interference and noise. It can be seen
that the variation of the best response is relatively small with
0.3 dBm for Player 1 and 0.5 dBm for Player 2. In the first
two cases where simulation was used, the Nash equilibrium
results in a (0, -2) value. For the case of LOG-a-TEC, in the
experimental setup, the multitude of Nash equilibria obtained
in different runs, after being rounded to the discrete values
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(a) b1(p−1) versus c1 and I + n0 (b) b2(p−2) versus c2 and I + n0

Fig. 3. The best response of Player 1 and Player 2 as function of each player’s cost and of the interference plus noise level.

(a) b1(p−1) versus h11 and I + n0 (b) b2(p−2) versus h22 and I + n0

Fig. 4. The influence of the channel gains on the players’ best responses.

(a) Experimental Nash equilibrium compared to simulated one for two
players.

(b) Players’ best response as function of players’ costs.

Fig. 5. On the Nash equilibria and their values as according to different costs.

of the transmission power supported in LOG-a-TEC, are (0,0)
and (0,-2).

Fig.5b depicts player strategies for different cost schemes.
It can be seen that with the increase of the cost ci, there is
a decrease of the allocated powers as discussed in subsection
VI-A. All the experiments were performed as following: the
channel gains hii were computed at the beginning of each

experiment by predicting the gain, interference and noise
power levels. I + n0, were measured and updated at each
iteration, k = 0, 4 and Pth = 0.8dBm. For Fig.5b, all the
experiments were repeated 20 times and the Nash equilibrium
are given as averaged values.
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VII. CONCLUSION

In this paper we proposed a methodology for the experimen-
tal evaluation of a game theoretical framework for interference
mitigation, particularly the ProActive Power Update algorithm,
on the LOG-a-TEC low cost outdoor cognitive radio testbed.
The theoretical framework was adapted considering the con-
straints of the testbed and the resulting framework was then
implemented to run on the testbed and the experiments have
been performed in the 2.4 GHz ISM band. This enabled the
study the effects of the empirical parameter estimation on the
best response and players’ strategies which represent the Nash
Equilibra. The results showed that for a certain cost range,
the system can reach Nash equilibria. The equilibria and the
convergence time are strongly influenced by the cost but also
by the channel gains.

This work also shows that the implementation of a decen-
tralized game theoretic power allocation algorithm on a low-
cost testbed is possible and, most importantly, convergence to
Nash equilibrium in a real world environment is achievable.
Our experimental results may prove useful in developing
new protocols in decentralized CR networks. Additionally,
the current framework and implementation (openly available
at https://github.com/sensorlab/logatec-games) can be used for
future work such as evaluating the framework under dynamic
cost conditions.
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