
0

A Framework for Dynamic Composition of Communication Services

CAROLINA FORTUNA, Jozef Stefan Institute
MIHAEL MOHORCIC, Jozef Stefan Institute

We propose a framework for dynamic composition of communication services which is well suited for facil-
itating research and prototyping on real experimental infrastructures of remotely configurable embedded
devices. By using the concept of composeability, our framework supports modular component development
for various networking functions, therefore promoting code re-use. The framework consists of four compo-
nents: the physical testbed, the module library, the declarative language and the workbench. Its reference
implementation, ProtoStack, developed using semantic web technologies, supports remote experimentation
on sensor platform based infrastructure, thus being well suited also for experimenters that do not poses
their own physical experimentation infrastructure. We illustrate how ProtoStack supports research in ser-
vice oriented networks and a cognitive networking. The cost of increased flexibility and prototyping speed
of the protocol stack is paid in terms of increased memory footprint, processing speed and energy consump-
tion. Compared to the most related non composable approach, the CRime library used by ProtoStack has
16 to 17% larger footprint, it takes 2.4 times longer to execute an openÝ sendÝ recvÝ close sequence and
consumes 1.6% more power in doing so. Even though with ProtoStack more resources are consumed by the
node, the tradeoff in terms of prototyping speed pays it off.

Categories and Subject Descriptors: C.2.1 [Computer-Communication Networks]: Network Architecture
and Design - Network communication, Distributed networks, Wireless communication

General Terms: Design, Algorithms, Performance

Additional Key Words and Phrases: framework, composition, modular, infrastructure, experimentation, on-
tology, reasoning

ACM Reference Format:
Carolina Fortuna and Mihael Mohorcic, 2013. A Framework for Dynamic Composition of Communication
Services. ACM Trans. Sensor Netw. 0, 0, Article 0 (0), 43 pages.
DOI:http://dx.doi.org/10.1145/0000000.0000000

1. INTRODUCTION
Sensor networks are playing an important role in the research and development of
next generation (wireless) communication technologies. A large body of research on
novel algorithms and protocols for wireless sensor networks has been done without
being limited by constraints present in other, more mature, computer and communi-
cation technologies. More recently, sensor networks are playing a key role in enabling
cognitive radio networks being used mostly for radio spectrum sensing purposes. Many
of the findings are being evaluated in sensor based testbeds that were deployed in the
Future Internet Research and Experimentation [FIR 2013] and Global Environment
for Network Innovations [GEN 2013] initiatives.

This work was supported by the Slovenian Research Agency (Grant no J2-4197 and P2-0016) and the Euro-
pean Community under CREW Cognitive Radio Experimentation World (Grant no 258301).
Author’s addresses: C. Fortuna, M. Mohorcic Department of Communication Systems, Jozef Stefan Institute,
Jamova 39, 1000 Ljubljana, Slovenia.
Permission to make digital or hard copies of part or all of this work for personal or classroom use is granted
without fee provided that copies are not made or distributed for profit or commercial advantage and that
copies show this notice on the first page or initial screen of a display along with the full citation. Copyrights
for components of this work owned by others than ACM must be honored. Abstracting with credit is per-
mitted. To copy otherwise, to republish, to post on servers, to redistribute to lists, or to use any component
of this work in other works requires prior specific permission and/or a fee. Permissions may be requested
from Publications Dept., ACM, Inc., 2 Penn Plaza, Suite 701, New York, NY 10121-0701 USA, fax +1 (212)
869-0481, or permissions@acm.org.
© 0 ACM 1550-4859/0/-ART0 $15.00
DOI:http://dx.doi.org/10.1145/0000000.0000000

ACM Transactions on Sensor Networks, Vol. 0, No. 0, Article 0, Publication date: 0.

0:2 C. Fortuna and M. Mohorcic

An increasing research area where sensor networks are used for experimentation
is cognitive (radio) networking (the wiLab.t, TWIST and LOG-a-TEC in the CREW
project [CRE 2013] are sensor platform based testbeds). The main reason for using sen-
sor platforms is their relatively low cost and wide range of functionality. For instance, a
sensor node can easily perform radio spectrum sensing based on energy detection and
can be (re)programmed or (re)configured to transmit on a certain channel based on
the sensing result. However, cognitive networking as a concept goes beyond spectrum
sensing. The idea behind it is to create dynamic and adaptable communication net-
works by taking advantage of artificial intelligence techniques [Thomas et al. 2006]
[Fortuna and Mohorčič 2009b]. In order to be able to support experimentation with
such advanced networking paradigms, a framework that supports the experimenter in
designing, implementing, configuring and deploying network services in response to
the operating environments and selected goals is required.

In this paper, we propose a framework for the dynamic composition of communica-
tion services that allows modular algorithm and protocol design, flexible and dynamic
composition and configuration of protocol stacks and easy deployment on a testbed. In
communication networks, a service is a set of primitives which provide communication
functionality. Services use primitives to send requests and receive responses. Proto-
cols are implementations of services and a set of protocols can form a communication
stack. Traditionally, services and protocols are fixed and defined by standards which
prevents adaptation of networks to changing conditions.

The main novelty in this paper with respect to the state of the art in the field are:

— The definition of a generic framework for dynamic composition of communication
services.

— A reference implementation of the framework for dynamic composition of communi-
cation services as a proof of concept. We named the reference implementation Pro-
toStack. The tool is purposely developed using semantic web technologies to support
i) fully remote configuration and experimentation and ii) easy integration into fed-
erations of testbeds, thus being well suited also for experimenters that do not poses
their own physical experimentation infrastructure.

— A composeable stack for sensor systems called Composeable Rime (CRime).
— The declarative language which supports configuration, validity checking, publishing

and finding modules and logical reasoning.

Further novelties are: (i) practical component reuse within the CRime module library
which makes programming communication functionality for sensor networks a pleas-
ant exercise, (ii) knowledge representation of and reasoning about the CRime world
model for cognitive networking and (iii) repeatable and remote experimentation capa-
bility through the declarative language, which allows serialization and re-loading of
experiments, and the web based GUI, which allows remote access.

This paper is structured as follows. In Section 2 we define the framework for the
dynamic composition of communication services with focus on the key functional com-
ponents and requirements. Section 3 introduces the CRime module library, its abstrac-
tion and an architectural comparison with Rime. Section 4 discusses the requirements
and design decisions related to the declarative language, the custom CRime ontology
and aspects related to supporting experimental infrastructures. Section 5 is concerned
with ProtoStack, the reference implementation of the framework and the configuration
steps required for experiment configuration and instantiation. Section 6 presents the
way ProtoStack can support service oriented networks by means of a use case where
service composition is performed using self-descriptive network elements and logic
reasoning. Section 7 presents the way ProtoStack can support experimentation with
cognitive networking by showing how it automates previous manually executed tasks.

ACM Transactions on Sensor Networks, Vol. 0, No. 0, Article 0, Publication date: 0.

A Framework for Dynamic Composition of Communication Services 0:3

Fig. 1: The four components of the framework for the composition of communication
services.

Section 8 quantitatively evaluates the cost of composeability introduced by the CRime
architecture with respect to the baseline Rime architecture. This section also includes
remarks related to the usability of ProtoStack based on feedback received from first
time users. Section 9 summarizes related work with emphasis on the novelty brought
by the proposed framework and its reference implementation, and provides evaluation
consideration with respect to the related work. Finally, Section 10 concludes the paper.

2. DEFINITION OF THE FRAMEWORK
Compared to existing communication networks with predefined fixed protocol stack,
the investigation of dynamically composeable services and protocol stacks that are in-
herently less structured requires a well defined development environment and basic
building blocks to ensure successful outcomes. To this end, we propose a generic frame-
work for the dynamic composition of communication services which can be applied to
existing systems as well as future ones.

The overall framework has four functional components: the physical testbed, the
module library, the declarative language, and the workbench as depicted in Figure 1.

The physical testbed. By physical testbed we refer to a set of machines on which the
stack built by the composition of services is deployed and tested. The machines need to
support the module library and any additional software that is planned to be deployed.
When implementing the framework, the type of machines will determine the selection
of the module library, or vice versa. To better represent the likely future deployments,
it is desirable that the supported machines of the physical testbeds be as diverse as
possible (i.e. heterogeneous). This implies that the module library should be portable.
Further, depending on the location and configuration of the testbed, procedures for re-
setting the machines in case of fatal errors may be challenging, therefore it is desirable
that the deployed binary image is fault proof.

The module library. The module library consists of the source code of the basic mod-
ules used for composing communication services. Besides the code for the modules it
also contains additional code necessary for compiling and linking the binary image.
Depending on the programming language, the modules are implemented as classes or
as a set of functions, each in its own file. The modules provide services to each other
through interfaces. A module may correspond to a basic service such as routing (e.g.
shortest path routing) or to composite services such as entire protocol (e.g. IP).

The declarative language. The declarative language is used to instantiate and con-
figure modules from the module library. Subsequently, tools that are able to perform
validity checking, error detection, compilation of binary images and their deployment
in the physical testbed can be used. The declarative language is a natural intermediate
level of abstraction between a user interface such as the workbench and the program
code. There is a correspondence between elements of the workbench and the elements
of the language. A translation tool is employed to translate from the workbench’s el-
ements to the declarative language. In some cases, the user may want to bypass the

ACM Transactions on Sensor Networks, Vol. 0, No. 0, Article 0, Publication date: 0.

0:4 C. Fortuna and M. Mohorcic

user interface and directly use the declarative language for describing and configuring
the modules in a stack prior to the experiment. As a consequence, the language typi-
cally also needs to be human readable, possibly easy to learn and should use intuitive
code words.

The workbench. The workbench is thought of as a control panel which allows the
experimenter to configure, start, run, retrieve and visualize the results of an experi-
ment. Therefore the workbench should first and foremost contain functionalities that
allow the experimenter to intuitively compose a stack and provide initialization pa-
rameters. This is typically achieved by having a region where available modules are
listed in graphical and/or textual form (e.g. shortest path routing, transmission control
protocol). These modules can then be dragged to a workspace, connected to each other
and can have specific parameters initialized (e.g. time to live, maximum number of re-
transmissions). Some error checking mechanism should be implemented to ensure that
incompatible elements are not wired together and that parameters are within the per-
mitted ranges. Additionally, the workbench can contain an area where the experiment
can be visualized while running (e.g. number of dropped packets, delay) and where a
summary of the completed experiment can be provided (e.g. total time per operation).

2.1. Requirements
The described framework for the dynamic composition of communication services has
to support design and experimentation with new communication services and modular
protocol stacks. We identified a set of requirements which help fulfill this objective:

— Modularity: the communication services have to have a modular design and imple-
mentation to allow composeability of more complex services which can then achieve
end to end communication.

— Flexibility: the components of the workbench should be designed and implemented in
a way that allows interacting with the resulting tool at different levels of abstractions
(e.g. at the module library level, at the workbench level). The components should also
be easy to extend and upgrade.

— Easy programming: users with various levels of programming skills should find it
easy to use the tools appropriate to their level of experience resulting from the im-
plementation of the framework.

— Reproducibility of experiments: the framework should support re-running and repro-
ducing experiments in an easy way for instance by saving and reloading an experi-
ment description.

— Remote experimentation: remote users should be able to define and perform experi-
ments and download the result. This can be most easily achieved through the web
based design of the tool, thus from the beginning considering (semantic) web tech-
nologies as most appropriate candidate to fulfill this requirement

Reference implementations of the framework for dynamic composition of communica-
tion services should take this set of requirements as guidelines.

3. THE COMPOSEABLE RIME MODULE LIBRARY
In this section we introduce the Composable Rime (CRime) module library1 proposed
to support modular protocol design for embedded devices and used for the reference
implementation of the proposed framework. CRime is a new architecture but it is in-
spired by and built upon the existing Rime [Dunkels et al. 2004] architecture.

1The module library can be downloaded from https://github.com/sensorlab/CRime

ACM Transactions on Sensor Networks, Vol. 0, No. 0, Article 0, Publication date: 0.

A Framework for Dynamic Composition of Communication Services 0:5

There are two main reasons for which the Rime architecture was chosen as a start-
ing point. First, Rime already provides modularization of communication services from
a ’top down’ perspective as opposed to a ’bottom up’ perspective employed by [Levis
et al. 2004] [Tavakoli et al. 2007b] or [Polastre et al. 2005]. By ’top down’ perspective
we mean that the authors designed and implemented the modules based on the most
common communications services used by a network such as unicast, multicast, route
discovery, etc. The development was based on the tacit knowledge acquired by the au-
thors from practical experience or from the community and the code was written from
scratch. By ’bottom up’ we mean that the authors already had a large body of protocol
implementations available and they investigated all of them trying to identify the core
abstractions that led to the modularization. The ’top down’ approach has the advan-
tage that the design and implementation are more reduced in scope, while allowing
further extensions. As such, we find this approach more flexible for future extensions
while in the existing state sufficient for the proof of concept and allowing to keep fo-
cus on the overall framework and tool. The ’bottom up’ approach would require more
significant effort to be invested in developing and implementing the module library,
thus distracting from the overall framework and enabled use cases. The ’bottom up’
approach, however, has the advantage that the number of available modules is larger
compared to the ’top down’ approach. The second reason for choosing the Rime archi-
tecture as a foundation was that many of the abstractions already present in Rime
such as the functionality of the modules, the tree-like stacks and the separation be-
tween packet creation and functionality have been shown [Braden et al. 2003][Levis
et al. 2004][De Poorter et al. 2011] to be legitimate and good enablers for flexible and
composable stacks.

3.1. CRime abstractions
For the composition of communication services, the CRime architecture introduces
three abstractions: the amodule, the pipe and the stack.

CRime abstract module. The CRime amodule (short from abstract module) is a
generic building block of the CRime stack. Behind each instance of an amodule there
is an implementation of a communication service [Fortuna and Mohorčič 2009a] such
as broadcast or multihop. The communication service is an implementation of a net-
work function such as protocol or algorithm and contains only the execution logic of
that function. Several amodule instances can be arranged in a pipeline to form a com-
munication stack. Conceptually, amodules are similar to protocols in [Hutchinson and
Peterson 1991] and [De Poorter et al. 2011], elements in [Kohler et al. 2000], roles in
[Braden et al. 2003], components in [Taherkordi et al. 2011] and functional blocks in
[Bouabene et al. 2010] in the sense that they contain well defined network functional-
ity or communication service as we refer to it throughout this paper. Their functional-
ity and implementation mimic in a procedural programming language the notion of a
class from an object oriented programming languages.

A CRime abstract module defines a generic interface which currently contains 11
generic primitives, based on the functions used by the Rime protocols and may change
as the system evolves (i.e. new modules are added, functionality of existing modules
is changed). Any CRime communication service has to implement some of the generic
primitives defined by the amodule interface. An example is the c abc module which
performs anonymous broadcasting (abc): it sends unsigned messages to its neighbors.
c abc is an instance of the amodule with an interface that implements five primitives:
c open, c close, c send, c recv and c sent.

In addition to an interface, amodules also define triggers. This means that any amod-
ule can be invoked when a given timer expires. When an amodule is invoked in such a

ACM Transactions on Sensor Networks, Vol. 0, No. 0, Article 0, Publication date: 0.

0:6 C. Fortuna and M. Mohorcic

way, the underlying modules will be invoked as well. This functionality is useful when
the protocol designer wants to design a stack which is able to repeat transmissions of
packets. Triggers can be invoked at any of the following three layers of abstraction:
workbench, declarative language, C code. Triggers are exposed for every module avail-
able in the workbench and they can be manually configured by clicking a checkbox
and providing two parameters specifying trigger time and the number of times they
should be executed. Alternatively, this can be specified using the declarative language.
Finally, they can be called from the C code for instance by implementing an amodule
that realizes functionality such as ”retransmit if the quality of the link is lower than a
threshold”.

Several instances of the amodule interface are added to a one-dimensional array
structure which forms a stack (note that this is a simple stack of the 1 channel —1
stack type). The generic primitives use recursion to walk through the one-dimensional
array.

CRime pipe. The pipe is a vertical structure which can be accessed by any of the
modules in a composed stack. The pipe contains only data structures corresponding to
parameters that are used by the stack. Pipes are uniquely identified by the channel
number they are assigned to, therefore a single channel can only have one associated
pipe at a time. This implementation, while not the most efficient approach from a
software engineering perspective, nor the most resource efficient in terms of memory
requirements, instantiates the concept of vertical layer and can be seen as the first
building block in the implementation of the knowledge plane required for experimen-
tation with cognitive networks [Fortuna and Mohorčič 2009b]. The approach is also a
compromise between the memory footprint and the complexity required by the auto-
generated C code based on user input. Pipes are designed to complement the existing
shared memory for packet attributes that already exists in the Rime stack and is used
by Chameleon to form protocol headers [Dunkels et al. 2007]. The IDRA system pro-
posed in [De Poorter et al. 2011] actually generalizes the functionality of the shared
packet attributes from Rime and the pipe from CRime using the shared queue concept.

CRime stack. The stack is a structure which contains a meaningful sequence of
amodules and the corresponding pipe data structure. It behaves as a container for
these elements and enables the composition of more complex communication services
which use more than a single channel at a time. Using the stack abstraction, an in-
dependent communication stack can reside on each channel being uniquely identified
by the channel number. These stacks merge at the application layer or below it. For
instance, the mesh routing application in Rime uses a set of communication primitives
that form a logical tree and run on three different channels [Dunkels et al. 2007]. Data
is transmitted on one channel and signalling for route discovery and maintenance on
the other two. To enable composeability of such a complex network service as offered
by the mesh routing example, CRime uses for implementation three stacks as gener-
ically illustrated in Figure 2b, each consisting of an ordered set of amodules and a
corresponding pipe.

While a set of amodules together with a pipe can form a 1 channel —1 stack com-
munication service, these abstractions are insufficient to support a more complex n
channel —n stack communication services. Therefore, the stack structure is designed
to handle the tree specific to the n channel —n stack model. Particularly, the stack
structure handles branching and merging of the communication services based on the
implemented primitives. Figure 2 depicts the three abstractions in an example of a 1
channel —1 stack and an example of a 3 channel —3 stack communication system.

The theoretical model behind the CRime communication stack is a tree as depicted in
Figure 3. Each node of the tree includes one or more amodules which are connected and

ACM Transactions on Sensor Networks, Vol. 0, No. 0, Article 0, Publication date: 0.

A Framework for Dynamic Composition of Communication Services 0:7

(a) 1 channel—1 stack (b) 3 channel—3 stack

Fig. 2: Example of CRime stacks.

Fig. 3: Tree model with one pipe per stack which is used for the CRime implementation.

communicate in a horizontal manner. Each leaf of the tree corresponds to a channel
and the corresponding branch forms a stack and has a pipe attached. Recursion is used
to walk through the tree.

In IDRA [De Poorter et al. 2011], the functionality of this abstraction is achieved by
the shared queue, however, IDRA assumes a higher level of flexibility than CRime
by supporting a classifier that decides what protocol (amodule in our terminology)
processes each packet. In CRime this sequence is pre-specified and can change only
when a stack reconfiguration action is taken and not automatically for each single
incoming packet. Furthermore, through the shared queue, IDRA holds a shared list
of neighbors that is accessible to all protocols (amodules). The assumption in CRime
is that the set of neighbors for stack A is not the same as the list of neighbors for
stack B and thus they should be stored in separate data structures offered by the pipe.
However, all modules from that stack can see the list of neighbors. Due to the increased
flexibility, IDRA has a larger footprint than the baseline functionality available in
TinyOS where it is implemented, similar as CRime has larger footprint with respect
to Rime.

3.2. Architectural comparison with Rime
CRime packets. In CRime, the packets are formed the same way as in Rime and

this is due to the fact that, like Rime, CRime is built on top of Chameleon and uses
it for forming packets (i.e. generates packet headers, adds the data) [Dunkels et al.
2007]. Chameleon can be seen as an abstraction layer which adapts packets to the

ACM Transactions on Sensor Networks, Vol. 0, No. 0, Article 0, Publication date: 0.

0:8 C. Fortuna and M. Mohorcic

actual underlying MAC protocols. Chameleon uses a block of memory where the packet
header and the packet data are located. This memory is filled by the application and
Rime protocols. A set of predefined packet attributes help to point to the corresponding
header attribute. The form of the header attribute is influenced by the stack and is
automatically handled by Chameleon, which does not include attributes corresponding
to non-defined memory locations.

CRime communication primitives. The Rime stack originally defined 10 com-
munication primitives [Dunkels et al. 2007]. The stack has evolved since and currently
comprises around 20 primitives, depending on which modules are considered commu-
nication primitives. In CRime, the aim was to implement modularity for dynamic re-
configuration while keeping all the functionality from Rime. Since some Rime primi-
tives can be further decomposed as we also demonstrate in this paper, the number of
primitives is reduced in the CRime architecture. This means that CRime breaks mod-
ules with repeated functionality from Rime to facilitate composeability and component
reuse. Furthermore, the dedicated Rime primitives that implement periodic retrans-
missions, also referred to as stubborn, are replaced in CRime by the amodule triggers.
CRime also allows transforming any primitive into a stubborn one by activating the
trigger mechanism. Rime primitives which implement very similar functionality such
as polite and identified polite are reduced to a single primitive in CRime, thus increas-
ing component reuse. This is enabled by the dynamic composition of amodules which
is not supported by Rime.

To exemplify this discussion, let us consider a subset of six Rime primitives (abc,
polite, broadcast, stbroadcast, ipolite and unicast) whose functionality is summarized
in Appendix A. The selected primitives are by no means exhaustive but they are suf-
ficient to explain why CRime needs fewer modules than Rime to achieve the same
functionality. The CRime primitives necessary to implement the same functionality as
provided by the 6 Rime primitives enumerated above are c abc, c polite, c broadcast
and c unicast also summarized in Appendix B.

The stubborn unicast module (stunicast, Appendix A) does the same thing for the
unicast module as the stubborn broadcast module does for the broadcast primitive.
Stunicast enables the repetitive sending of the same packet using unicast while
stbroadcast enables the repetitive sending of the same packet using broadcast.

The dependency graph of the modules summarized in six Rime modules is depicted
in Figure 4. It can be seen that any Rime protocol based on the 6 primitives enumer-
ated above (and detailed in Appendix A) uses the abc module. Any path through the
Rime dependency graph forms one Rime protocol stack. It can be seen that when an
unidentified message needs to be sent, then either the abc module is invoked, or the
sequence of polite-abc modules are invoked. For identified message, the broadcast-abc
or ipolite-broadcast-abc modules are used, while for repetitive sending of identified
messages, the stbroadcast-broadcast-abc modules are invoked.

The same functionality can be achieved in CRime using only 4 modules and dynamic
composition. CRime uses the c abc, c broadcast, c polite and c unicast modules which
are designed to do the same task as abc, broadcast, polite and unicast. The function-
ality of the Rime ipolite primitive is achieved by using c polite over c broadcast. In
such a configuration, CRime’s c polite, similar to Rime’s polite, will make sure that
one message will be broadcasted in the time interval only if a similar message has not
been heard from neighbors. The broadcast module will make sure that the sender ID
is inserted in the packet header. The composition of these two modules will result in
identified polite (ipolite) broadcast. The Rime stbroadcast module is unnecessary in
CRime as a trigger can be attached to the c broadcast module.

ACM Transactions on Sensor Networks, Vol. 0, No. 0, Article 0, Publication date: 0.

A Framework for Dynamic Composition of Communication Services 0:9

(a) Rime dependency graph
<abc>
<polite, abc>
<broadcast, abc>
<unicast, broadcast, abc>
<ipolite, broadcast, abc>
<stbroadcast, broadcast, abc>

(b) CRime dependency graph
<c abc>
<c broadcast>
<c broadcast, c abc>
<c polite, c abc>
<c polite, c broadcast, c abc>
<c polite, c broadcast>
<c unicast, c polite, c abc>
<c unicast, c broadcast>
<c unicast, c broadcast, c abc>
<c unicast, c polite, c broadcast, c abc>
<c unicast, c polite, c broadcast>

Fig. 4: Dependency graph in (a) Rime and (b) CRime. It can be seen that with the
CRime approach, there are more possible combinations of modules which can form a
stack (11 vs 6).

In the Rime dependency graph depicted in Figure 4a, there are a total of 6 possible
paths corresponding to 6 possible stacks, while in the CRime dependency graph in
Figure 4b, the number of possible paths is 11. Perhaps not all the possible paths will
make sense and sometimes paths will contain redundant modules. For instance, in
the CRime <c unicast, c broadcast, c abc>path, the c abc module is redundant as the
same functionality can be achieved by the <c unicast, c broadcast>path. There will be
paths, however, which permit experimenting with new configurations which may not
make sense to develop otherwise and perhaps would not even be obvious otherwise.

Support for modular stacks. Reconfiguring a stack in Rime requires good under-
standing of the Rime design and implementation, and involves manually writing a
fair amount of C code, as the existing Rime tree is hard coded. Reconfiguring a stack
in CRime also requires fairly good understanding of the CRime design, but it involves
writing only a few lines of C code to initialize the one-dimensional arrays and the
required variables. Arguably, the CRime approach is more developer friendly and per-
mits quicker configuration of stacks. Generating a tree out of existing modules by ini-
tializing a set of one-dimensional arrays is typically less challenging than re-wiring a
hard coded tree.

Furthermore, in the case of CRime, the initialization code can be generated automat-
ically, the recursion is explicit and the implementation allows flat initialization using
a limited set of variables, which is easy to generate automatically. In Rime, it is infea-
sible to automatically generate configuration code for a new stack, due to the module
specific data structure and parameters and the hard wiring of modules. Additionally,
the recursion is implicit through the callback mechanism and it is infeasible to devise
a template which would allow automatic generation.

ACM Transactions on Sensor Networks, Vol. 0, No. 0, Article 0, Publication date: 0.

0:10 C. Fortuna and M. Mohorcic

Fig. 5: Illustration of the way the Rime unicast stack is implemented.

Fig. 6: Illustration of the way a possible CRime unicast stack is implemented.

If we consider the three module Rime stack <unicast, broadcast, abc> defining the
unicast communication service, then Figure 5 illustrates the sequence in which the cor-
responding functions are called. The sequence of functions which are invoked starting
from the application level and going down to the abc module is indicated with contin-
uous line arrows, while the sequence of functions invoked by Rime when a message
is received is indicated with dash line arrows. The program logic for sending a packet
using the Rime unicast stack is hard coded in the open, close and send functions corre-
sponding to each module. In order to change this sequence, the code of each function,
together with the type of connection in the corresponding data structure, needs to be
changed. For instance, if we wished to generate the following Rime stack<unicast, ipo-
lite, broadcast, abc>, then the struct broadcast conn c; from the unicast module would
need to be replaced by the corresponding ipolite connection struct ipolite conn c; and
the ipolite callbacks need to be properly set to point to unicast sent and recv functions
and the code of the unicast open, close and send functions would need to be changed to
explicitly call the corresponding ipolite functions.

The equivalent CRime stack is <c unicast, c broadcast, c abc> as depicted in Fig-
ure 6. The sequence of functions called when a packet needs to be sent or received is
pre-determined by the corresponding c open, c close, c send, c recv and c sent generic
primitives from the amodules. Which functions will be called depends on what the
generic primitives point to. In Figure 6, for the c unicast module, the generic prim-
itives point to the corresponding unicast implementations. If we wished to generate
the <c unicast, c polite, c broadcast, c abc> stack as in the Rime example above, we
would need to replace the c polite module between amodule[1] and amodule[2]. The
corresponding code consists of correctly initializing a one dimensional array.

ACM Transactions on Sensor Networks, Vol. 0, No. 0, Article 0, Publication date: 0.

A Framework for Dynamic Composition of Communication Services 0:11

Support for cross-layering. Rime was designed with strong support for cross-
layer experimentation by defining a data structure which is accessible to all the layers
in a given stack and which contains a number of parameters, some of which are used
for creating packets. Currently there are 27 attributes (and parameters) supported in
this structure but this can be easily extended with additional ones. CRime takes full
advantage of this design feature without modifying anything. Additionally, through
the pipe structure, CRime permits additional parameter sharing.

Support for cognitive networking. CRime provides support for cognitive net-
working in two ways. First, due to support for cross-layer design, it facilitates infor-
mation sharing through layers and with the control plane. Cognitive components can
have as such access to the shared information. Second, due to the modular implemen-
tation it is easy to add cognitive components. For instance, a routing module which
uses reinforcement learning can be added and wired just like any other module.

Portability. As an extension of Contiki OS, the CRime stack benefits from the ad-
vantages which come with the OS with respect to portability. Contiki OS has been
ported to several platforms [Con 2013] and can also be used with the Cooja simulation
tool. As such, CRime can also be used on those platforms as well as with Cooja.

4. THE DECLARATIVE LANGUAGE AND WORKBENCH
The role of the declarative language is to provide a level of abstraction between the
workbench and the module library. Besides being used for configuration purposes, such
a language can also be used for validity checking (Section 5.2), to federate (sensor
based) research infrastructures [Ghijsen et al. 2012] and for knowledge representation
and reasoning (Section 6) to support service oriented networks (SONs) [Fortuna and
Mohorčič 2009a] and cognitive networks [Fortuna and Mohorčič 2009b].

4.1. Requirements for the declarative language
Upon deciding on a suitable declarative language to be used for the reference imple-
mentation of the framework for dynamic composition of communication services, the
following requirements were considered:

— Simplicity: the proposed framework for dynamic composition of communication pro-
tocols and services is targeting researchers in communication networks and technolo-
gies. This target community is typically accustomed to imperative programming (C,
C++, Java, Python, Matlab) and it can be more difficult to start using complicated
declarative languages (Prolog).

— Machine interpretable: the declarative language should be machine readable in order
to facilitate easy manipulation by machines.

— Standardized approach: the purpose of the language within the proposed framework
is to provide a necessary layer of abstraction and to support domain specific research
challenges; therefore a relatively widely adopted, open and stable standardized ap-
proach is preferred to a less stable and potentially proprietary approach.

— Interoperability: the language should be designed to facilitate the interoperability of
systems so that potential reference implementations of the framework can be eas-
ily integrated at this level of abstraction. Such approach can lead to a large scale
formalized representation of communication systems.

— Support for knowledge representation and logic reasoning: besides its role as an ab-
straction layer in the proposed framework, the declarative language should also sup-
port emerging logical reasoning for self-configuration of communication networks.

ACM Transactions on Sensor Networks, Vol. 0, No. 0, Article 0, Publication date: 0.

0:12 C. Fortuna and M. Mohorcic

Table I: The ProtoStack language model.
Subject (Resource) Predicate (Property) Object (Statement)
crime:c abc rdf:type cpan:Module
crime:c open rdfs:subClassOf crime:Function

4.2. Design decisions related to the declarative language
The requirement that restricts most of the search space for a suitable declarative
language is the last one referring to support for knowledge representation and logic
reasoning. Knowledge can be represented in various forms, using very expressive lan-
guages such as the natural language or less expressive, artificial languages such as
algebraic representations. Recent efforts in creating expressive artificial languages
for machine interpretability resulted in languages such as the Resource Description
Framework (RDF) [RDF 2013], the Web Ontology Language (OWL) [McGuinness et al.
2004] and CycL [Lenat and Guha 1991]. RDF is the least expressive of the three; OWL
is a restricted but more expressive form of RDF, while CycL is the most expressive.

Knowledge represented using these languages can be queried and the complexity of
the queries is directly related to the expressiveness of the representation language.
Knowledge bases using RDF support relatively simple queries via SPARQL [Prud-
Hommeaux et al. 2008]; the ones using OWL support reasoning with first order logic,
while the ones using CycL support second and higher order reasoning. The trade-off
for expressiveness is the complexity of the reasoning engine and the time needed to
deduce the result.

RDF and OWL are more appropriate for encoding knowledge which has to be trans-
ported between systems as can be seen from most application areas, including the
IEEE 802.21 specification [Group et al. 2008]. In IEEE 802.21, for instance RDF is
used for encoding location based knowledge that is transported between the Media
Independent Information Service residing on the mobile terminal and its peer in the
service provider network. Both RDF and OWL are standard languages used in the
semantic web. RDF is the simpler of the two while also supporting a SPARQL based
inference mechanism and a simplified syntax called Turtle, which prevailed in the
selection procedure of the declarative language to be used for the reference implemen-
tation of the framework.

In summary, the declarative language uses the RDF data model; the custom vocab-
ulary built by creating the CRime ontology and the Turtle syntax which is human
readable and can easily be transformed in XML if needed. The RDF data model con-
sists of a triple subject-predicate-object model as shown in Table I. Some keywords
are part of pre-existing standard vocabulary such as subClassOf which is a property
defined by the W3C RDF Schema. Two example statements in standardized form with
the preceding namespace using Turtle representation are provided in the table; the
first one says that c abc is of type module and the second says that c open is a sub
class of the class function.

4.3. The CRime ontology
Standardized knowledge representation languages typically use a common vocabulary.
Often this vocabulary takes the form of an ontology which in addition to common terms
also provides relationships between these terms. Many ontologies have been developed
that are modelling different aspects of the world, while specific and detailed ontologies
modelling aspects of communication networks are rare and typically very narrow, for
instance covering a very specific aspect of the network such as security [Shepard et al.
2005]. The need for a generic data model for federated infrastructures has been rec-

ACM Transactions on Sensor Networks, Vol. 0, No. 0, Article 0, Publication date: 0.

A Framework for Dynamic Composition of Communication Services 0:13

(a) CRime classes (b) CRime predicates

Fig. 7: The CRime ontology: (a) classes and (b) predicates.

ognized and several initiatives to use ontological models are underway [Ghijsen et al.
2012]. Such data models tend to abstract the real-world network related set-up.

In the case of our work, the world model consists of CRime enabled networks, and
therefore the creation of a custom ontology was necessary. In this section we discuss
the CRime ontology2 as needed by the tool while in Section 6 we look at how this
ontology can be used and extended for self-descriptive network elements and logic
based reasoning.

The CRime ontology (Appendix C) was built to help describe the conceptual model
behind CRime. It can easily be extended for future use. The ontology consists of two
levels of classes as depicted in Figure 7a. The first level contains the generic classes
such as Module, Interface, Function, Parameter and Scope. The second level consists
of subclasses of the Function concept, also referred to as primitives (i.e. from primi-
tive functions) in this work. These correspond to the 11 generic primitives defined by
CRime amodules. We also defined 9 properties to form statements about CRime (see
Figure 7b).

In the following we illustrate on the c abc example how the ontology can be used
to describe the CRime world model. The c abc instance is an implementation of an
amodule in the CRime parlance and it represents an individual (or instance) of the
module class in the CRime ontology (see Figure 8a). C abc defines 5 of the 11 primitives
from the amodule. It has a singlehop scope as it sends packets only to direct neighbors
and it implements top and bottom interfaces through which it interacts with adjacent
modules above and below. Finally, it uses some parameters such as channel no. All this
is stated in the graph depicted in Figure 8b. By further expanding the graph, it can be
seen in Figure 8c that the c abc open primitive, which is defined by the c abc module,
is an instance of the c open class of the ontology and that it is implemented in both
bottom and top interfaces.

2The ontology can be downloaded from https://github.com/sensorlab/ProtoStack/owl

ACM Transactions on Sensor Networks, Vol. 0, No. 0, Article 0, Publication date: 0.

0:14 C. Fortuna and M. Mohorcic

(a) c abc is an instance of a
module. (b) c abc defines the c abc open primitive.

(c) channel no is a parameter of c abc module.

Fig. 8: Example CRime statements describing the c abc module.

We used the Protege ontology editing tool for creating the CRime ontology and for
the visualizations presented in this section.

4.4. Reusability
The declarative language chosen for the reference implementation of the framework
uses a custom made ontology for the CRime set of modules, however. It can be re-used
by any other modular stack library and any other framework for stack composition.
For this purpose, the explained ontology would need to be extended or a project spe-
cific ontology would need to be created. Then, the server side logic would need to be
customized for that particular stack (i.e. we assume that the configuration code and
the abstractions in other stacks are significantly different than the ones in CRime).

4.5. Reproducibility of experiments
Reproducibility of the experiments is a key research requirement; however, it is often
neglected in several research areas, including sensor networks and cognitive (radio)
networks. Most of the published work include insufficient information to reproduce
the simulations and their findings. Furthermore, a relatively small number of authors
verify their findings in a realistic scenario, such as a physical testbed. The issues of re-
producibility and benchmarking [Gerwen et al. 2011] are addressed by several projects
including the Cognitive Radio Experimentation World [CRE 2013].

The declarative language enables easy reproducibility of experiments and can pro-
vide support to benchmarking frameworks. Descriptions and configurations of exper-
iments can easily be exchanged between infrastructures and interpreted as long as
the data model (the CRime ontology in this case) is also shared. The configuration can
then be used as an input to a benchmarking system.

ACM Transactions on Sensor Networks, Vol. 0, No. 0, Article 0, Publication date: 0.

A Framework for Dynamic Composition of Communication Services 0:15

4.6. Support for remote experimentation and federation
The declarative language complies with web standards and it can be used by web por-
tals to define and configure experiments remotely. Because the declarative language
uses an ontology as its vocabulary, it is possible to align or merge it with ontologies
used by other testbeds [Tosic et al. 2012] to achieve federation. In a federated environ-
ment that enables remote experimentation, a user located anywhere in the world and
having an internet connection is able to design and configure an experiment and run
it on several testbeds with minimal effort.

5. PROTOSTACK IMPLEMENTATION
For the experimental evaluation of the proposed framework for dynamic composition
of communication services we first had to develop its reference implementation, the
ProtoStack tool3. In this section, we describe and discuss its components and the steps
for experiment configuration and instantiation.

5.1. Reference implementation: the ProtoStack tool
The implementation of ProtoStack was triggered by a wireless sensor network testbed
and is used for experimentation with cognitive radio and cognitive networking in the
frame of the CREW project [CRE 2013]. As such, ProtoStack is designed in a way to
ease research and experimentation with communication networks, particularly with
cognitive networks. The system was designed so that an advanced user, such as the
component developer, needs to focus on developing the component and make it work
with Contiki [31] and a novice user needs only to focus on composing services in a stack
using the workbench.

The physical testbed is based on the VESNA sensor network platform with the Con-
tiki OS, which already includes the adaptive Rime architecture [Dunkels et al. 2004].
The constraints of this physical testbed were perfectly matched by CRime as the mod-
ule library, the declarative language based on the Resource Description Framework
(RDF) [RDF 2013] and the Turtle syntax together with existing standardized vocab-
ulary and a custom ontology. The workbench is tightly integrated with the language
and is implemented using WireIt, an open source javascript library which enables the
creation of full web graph editors.

In Figure 9 we illustrate the steps for dynamic composition of services using the
ProtoStack tool. The component developer develops a module, manually tests it and
makes sure everything works as intended. At the end he/she needs to write few lines
of Turtle statements (i.e. triples) which specify basic characteristics of the new module
(i.e. the name of the module, how many and what type of primitives it implements,
etc.). Once this is done, ProtoStack parses the Turtle triples from the new module and
stores them in the triple store (arrow 1 in Figure 9). When the user starts using the
system, the workbench will be automatically populated with modules based on the
statements stored in the triple store and rendered (arrow 2 in Figure 9).

The user will then compose the desired stack, insert the required parameters and
press a button to run the stack on the physical testbed (arrow 3 in Figure 9). When
such a command is received, the system first checks for consistency by making sure
the composition of modules is valid and that the input parameters are in a valid range.
If all is fine, some C code is automatically generated based on what the user composed
(arrow 4 in Figure 9). This code configures the CRime stack. Finally, the source code is
compiled into a binary form representing an image that is uploaded on VESNA (arrow
5 in Figure 9).

3The tool can be downloaded from https://github.com/sensorlab/ProtoStack

ACM Transactions on Sensor Networks, Vol. 0, No. 0, Article 0, Publication date: 0.

0:16 C. Fortuna and M. Mohorcic

Fig. 9: ProtoStack: an implementation of the framework for composing communication
services. The implementation addresses the sensor networks domain.

1. //turtle crime:c abc rdf:type cpan:Module .
2. //turtle crime:c abc crime:hasScope crime:singlehop .
3. //turtle crime:c abc open rdf:type crime:c open .
4. //turtle crime:c abc open crime:implements crime:top interface .
5. //turtle crime:c abc open crime:implements crime:bottom interface .
6. //turtle crime:c abc crime:defines crime:c abc open .

Fig. 10: Example Turtle statements describing the c abc module.

The experiment description resulting from the stack composed and configured by the
user is saved and can be re-used at a later time for re-running the same experiment.
Having the workbench implemented as a web portal and using the over the air pro-
gramming supported by the VESNA platform, the described use of ProtoStack can be
done remotely.

5.2. The ProtoStack configuration steps
The ProtoStack configuration consists of fact specification, translation and storage,
workbench rendering, manual stack composition, validity checking and code genera-
tion.

Fact specification, translation and storage. ProtoStack assumes that the mod-
ule developer, besides writing the C code necessary for the module, also provides the
description of the module in the ProtoStack language (i.e. annotates the module). This
description consists of a sequence of Turtle sentences using the CRime ontology as
vocabulary. The sentences are assumed to be written as comments in the header file
corresponding to the module.

Figure 10 lists example statements describing the c abc module (the full description
has 46 statements). The server parses the statements in each CRime header file and
inserts them in a specialized storage called triple store. We use the Sesame triple store
and a custom Java implementation based on the Jetty server for this.

The first line in Figure 10 states that c abc is a module (i.e. of type module) and the
second line states that c abcs scope is singlehop (i.e. provides singlehop communication
functionality). Subsequent lines state that c abc open is of type open, that c abc open
implements bottom and top interfaces and that c abc defines c abc open.

The system knows that c open is a primitive function and that functions implement
interfaces. It also knows that modules have two interfaces: top and bottom. All these
relationships between the concepts are modelled in the CRime ontology. The Turtle
notation in the header files specifies instances of the concepts present in the ontology
and relationships between these instances. All the Turtle statements from the CRime
modules are stored in a triple store and internally represented as a graph as shown

ACM Transactions on Sensor Networks, Vol. 0, No. 0, Article 0, Publication date: 0.

A Framework for Dynamic Composition of Communication Services 0:17

Fig. 11: Snapshot of the RDF graph describing the c abc module.

in Figure 11 for the c abc module. The nodes of the graph are either concepts (classes)
or instances (individuals). Concepts such as module and function are depicted with
yellow in the graph, while instances such as c abc and c abc open are depicted with
violet. The edges of the graphs represent the relationships between the nodes, and
each colour corresponds to one relationship as can be seen in the legend of the figure.
For instance, the blue edges connecting function with c open, c close, c send, c recv,
c sent as well as the ones connecting module, scope and interface to thing, represent
the subClassOf relationship.

Workbench rendering. The workbench is a graphical user interface which facil-
itates drag and drop style composition of a protocol stack. Such component is useful
for users, particularly to those accustomed to graphical simulation environments. The
workbench features a horizontal menu bar and three vertical work areas, as depicted
in Figure 12. The menu bar features buttons corresponding to operations that can be
performed with the stack. The left most area consists of the toolbox where the CRime
modules are listed. The middle area is occupied by a panel where the modules from
the toolbox can be dragged in and dropped, wired and configured in a stack. The right
most area consists of the properties bar where additional description of the stack can
be provided.

When the user opens the browser, a request is sent to the ProtoStack server for
the list of available modules and their corresponding parameters. The server receives
the request and interrogates the triple store for the information needed to populate
the toolbox in order to render the workbench. ProtoStack uses the RDF graph from
the triple store to automatically populate the toolbox situated on the left side of the
workbench. This is achieved by querying the store using the SPARQL query language
which performs template matching against the RDF graph. The system asks for all the

ACM Transactions on Sensor Networks, Vol. 0, No. 0, Article 0, Publication date: 0.

0:18 C. Fortuna and M. Mohorcic

Fig. 12: Snapshot of the ProtoStack workbench with a a 1 channel —1 stack configura-
tion.

available modules and their descriptions (see Figure 13 line 7). Then, it asks for the
scope and the parameters corresponding to each module that must be inserted by the
user (Figure 13 line 8).

The response is generated based on the responses to the SPARQL queries and is
returned to the client in the form of a JSON message. All the available modules and
the corresponding parameters are then rendered in the toolbox. These can be dragged
to the panel and configured in a stack as illustrated in Figure 12. Once the stack is
built and configured, the corresponding data is sent to the server on user command.

Manual stack composition. In order to compose a simple stack, the user first
loads the workbench in the browser and gets the available modules and their descrip-
tions presented in the toolbox. Then the user selects the desired modules and drags
them one by one to the panel, wires them and then fills in the values of the parame-
ters. The name of the stack needs to be provided in the Stack name box on the right
hand side of the workbench. An optional description of the stack can also be provided.

ACM Transactions on Sensor Networks, Vol. 0, No. 0, Article 0, Publication date: 0.

A Framework for Dynamic Composition of Communication Services 0:19

1. PREFIX rdf: <http://www.w3.org/1999/02/22-rdf-syntax-ns#>
2. PREFIX cpan: <http://downlode.org/rdf/cpan/0.1/cpan.rdf#>
3. PREFIX crime: <http://sensors.ijs.si/crime#>
4. PREFIX rdfs: <http://www.w3.org/2000/01/rdf-schema#>
5. SELECT ?name ?category ?description
6. WHERE {
7. ?name rdf:type cpan:Module .
8. ?name crime:hasScope ?category .
9. ?name rdfs:comment ?description .
10. }

Fig. 13: SPARQL query which retrieves the modules and their descriptions for popu-
lating the toolbox of the workbench.

When the stack configuration process is completed, the user submits the new stack to
the server.

When the server receives a new stack, it parses the JSON configuration and per-
forms consistency checking. In case of any inconsistency, the user is prompted, using
meaningful error messages which help with convergence towards a valid configuration.
Upon successful validation, the corresponding C code is generated, the binary image
compiled and then loaded to the node.

Figure 12 depicts an example of a correct 1 channel —1 stack configuration. The
stack is a unicast stack formed of a beginning module —symbolically named c app
and an ending module symbolically named as c channel. In between the c broadcast
and c unicast modules are placed. The composition is not complete before the modules
are properly wired.

The depicted stack initializes the sensor node with Rime address 1.0 (see the sender
field in the c broadcast module) and identifies the node with Rime address 2.0 as the
recipient of the messages (see the receiver field in the c unicast module). The communi-
cation will be carried out on channel 121 as configured by the channel no parameter of
the c channel module. Triggers are not activated for either of the modules in Figure 12
(time trigger flg is not selected), therefore the trigger parameters are not required. The
same stack with the triggering mechanism activated would have the time trigger flg
activated and the trigger interval parameter value set to the desired triggering fre-
quency (for instance 10 ms) and the trigger no parameter value set to the number of
times the trigger should be activated, thus defining the number of retransmissions and
their frequency

Validity checking and code generation. By validity checking we refer to the va-
lidity of the composed stack. As already discussed, each module defines a set of func-
tions and uses a set of parameters. However, the user is not able to see the functions
and can see only the parameters that need to be provided. This is a trade-off between
simplicity and completeness. If we render all functions for a module on top and bot-
tom interfaces (i.e. minimum 4 functions per interface), this would require the user
to drag in excess of 4 wires between each two modules and also make sure the wires
are connected to the correct terminal points. We consider this to be less user friendly,
therefore we hide it and we perform instead validity checking on the server side.

To prevent invalid sequences of modules being stacked and wired together, Pro-
toStack performs validity checking in two steps: pre-rendering checks and post-
rendering checks. Before rendering the tools in the toolbox, the workbench requests
from the server configuration parameters for each module. The server generates these
based on the knowledge inserted in the triple store. For validity checking, two pieces
of information are important: the connectors for each module and the required user
defined parameters.

ACM Transactions on Sensor Networks, Vol. 0, No. 0, Article 0, Publication date: 0.

0:20 C. Fortuna and M. Mohorcic

To simplify the module composition, we defined a top and a bottom interface for each
module. Intuitively, the top interface of module N can only be connected to the bottom
interface of module N+1 in the sequence. Similarly, the bottom interface of module N
can only be connected to the top interface of module N-1. The module developer inserts
Turtle statements specifying which primitive function is defined by which interface.
The developer also defines the parameters which are used by a module and the subset
which needs to be provided by the user. This information is used by the workbench
to generate appropriate boxes for each module and prevents connecting (wiring) in-
compatible interfaces (i.e. top to top and bottom to bottom) or submitting empty user
defined parameters.

When the user submits a composition of modules to the server, a more fine grained
validity check is performed at the interface level. For each pair of connected interfaces
<N-1 top, N bottom>, <N top, N+1 bottom>, a check for the overlap in implemented
primitives is performed. For instance, if N+1 bottom uses the c open primitive to re-
quest the opening of a connection and N top does not support that primitive, then the
composition is invalid and the appropriate message is conveyed to the user.

Experiment deployment. The experiment deployment step depends on the target
platform and the management network supported by the testbed. First, ProtoStack
using CRime as a module library can be used only on testbeds with sensors nodes that
support Contiki OS (over 15 hardware platforms are supported). In order to support
other module libraries, the CRime ontology needs to be changed and the corresponding
code for automatic code generation has to be added to the server. Second, most sensor
network testbeds use the available wireless interfaces for performing the experiment
and are controlled through a wired management network such as USB or Ethernet
(MoteLab, wiLab.t, TWIST, etc.). In such cases, the most straightforward way to de-
ploy the experiment is to prepare the binary image for the target hardware platform,
distribute it over the wired management channel to the nodes, then flash and restart
the nodes. Alternatively, the new experiment can be prepared as an ELF file that is
dynamically loaded as a new module to the already existing OS running on the node.

Testbeds in a real world operating environment (e.g. LOG-a-TEC, SmartSantander,
etc.) however, are managed through a wireless management network running on a
different radio interface than the experimental interface. For supporting ProtoStack
on such configuration, we have modified the Contiki OS to be able to run 2 network
stacks in parallel on two different radio interfaces. Thus in the LOG-a-TEC testbed,
it currently runs the 6LoWPAN/CoAP [Kovatsch et al. 2011] stack as a management
stack on the Atmel AT86RF212 radio and the CRime experimental stack on the TI CC
radio. The reprogramming speed in the case of using wireless management network is
significantly lower than in the case with the wired management alternative which can
be improved by using dynamic reconfiguration through CoAP service.

6. SUPPORT FOR SERVICE ORIENTED NETWORKS
In [Fortuna and Mohorčič 2009a] we proposed service oriented networks as a network
that makes use of principles defined by service oriented architectures (SOA) and per-
formed a comparison of the logical components defined by SOA and the Open Systems
Interconnect (OSI). The most important differences consist in the fact that in SOA ser-
vices have a well described interface using a standard definition language and these
interfaces are published, therefore they can be searched for and found. ProtoStack
provides an instantiation of this concept for sensor networks: amodules are the com-
munication services that have well described and published interfaces. This section
explains how ProtoStack services are described and published, how they can be found

ACM Transactions on Sensor Networks, Vol. 0, No. 0, Article 0, Publication date: 0.

A Framework for Dynamic Composition of Communication Services 0:21

and synchronized across different systems and then illustrates how their composition
can be automatised using logic reasoning.

The design and implementation choices employed for ProtoStack allow it being eas-
ily co-opted into federations because it uses semantic web technologies and has an
associated domain ontology. In recent efforts to federate experimental infrastructures
such as the ones in GENI [GEN 2013] and FIRE [FIR 2013], the importance of a com-
mon information model to provide unified configuration and control has been recog-
nized [Ren and Jiang 2011][Tosic et al. 2012]. In order to achieve such goal, a common
and infrastructure independent way of expressing experimental settings such as chan-
nel width, sweeping step, time duration of the experiment should be defined. This is
best done using a high level representation language, often by XML syntax that is ma-
chine interpretable, standardized and designed to support interoperability. Efforts in
creating domain ontologies and then mapping these to upper level, common ontologies
are in progress for specific types of experimental infrastructures [Tosic et al. 2012].

The ProtoStack declarative language and the CRime ontology were designed having
in mind machine interpretability, standards and interoperability. The language uses
the standard RDF data model and the statements describing any module can be readily
mapped to XML, JSON and other syntaxes. The CRime ontology, while specific for the
CRime modules, can be easily mapped to an upper layer ontology, thus ready to be
integrated with other infrastructures. Additionally, the ProtoStack language supports
knowledge representation and logic reasoning that can help to: (1) detect inconsistent
configurations and (2) increase the level of automation in protocol stack construction
to further the state of the art towards logic-based self-configurable networks.

Describing and publishing ProtoStack services. To speed up the composition
and deployment process, users are spared from the implementation, configuration and
deployment details. All these are hidden behind a web based workbench which is au-
tomatically populated with services available in a module library. The ProtoStack lan-
guage is used as an intermediary abstraction between the C implementation of the
modules and the Javascript based workbench. The knowledge provided as statement
through the ProtoStack language is stored in a triple store and published on the web.
It can then be further sent to a broker or crawled by semantic web tools [Dodds 2006]
which will make it easier to identify and find new modules that are relevant. In other
words, ProtoStack services and as a result testbeds using ProtoStack are self-described
and discoverable.

Synchronizing distributed ProtoStack systems. The web based implementa-
tion of the workbench readily supports distributed use and extension of the ProtoStack
tool but also requires an appropriate synchronization mechanism to be put in place.
In order to show how the synchronization of distributed ProtoStack systems can be
achieved, let us assume N distributed installations of the ProtoStack system at sev-
eral users across the world, each of the systems featuring the implementation of the
base CRime modulesMbase. Additionally, users of each system further develop modules
of their own Mi, i = 1, N . Any ProtoStack system Si can check the services (module de-
scriptions) published by any other ProtoStack system Sj , j 6= i and determine the set of
new modules Mj , j 6= i. Once this set is determined, the ProtoStack server will ask its
peer for the source files (.h and .c) of the corresponding modules Mj , j 6= i. The Turtle
statements from the files will be parsed and inserted into the local triple store which
will contain a larger set of modules Mi ∪Mj . Furthermore, the new modules will be
integrated with the local module library and can be used by Si’s users for experimen-
tation with service composition.

The main advantage of the choices we made in our reference implementation of
the framework with respect to the use case described in the previous section is that

ACM Transactions on Sensor Networks, Vol. 0, No. 0, Article 0, Publication date: 0.

0:22 C. Fortuna and M. Mohorcic

1. PREFIX rdf: <http://www.w3.org/1999/02/22-rdf-syntax-ns#>
2. PREFIX cpan: <http://downlode.org/rdf/cpan/0.1/cpan.rdf#>
3. PREFIX crime: <http://sensors.ijs.si/crime#>
4. PREFIX rdfs: <http://www.w3.org/2000/01/rdf-schema#>
5. SELECT ?name ?category ?description
6. WHERE {
7. ?name rdf:type crime:Function .
10. }

Fig. 14: SPARQL formulation of a query to retrieve all instances of type Function.

[rule1: (?a rdf:type ?b) (?b rdf:type ?c) ->(?a rdf:type ?c)]

Fig. 15: OWLIM compatible rule that defines transitivity relationship.

RDF/SPARQL can integrate data from distributed systems. This integration is trivial
due to the schema re-use, one of the main advantages of SPARQL versus the widely
used Structured Query Language (SQL) [Codd 1970]. In the case of ProtoStack, the use
of RDF with the CRime ontology facilitates the retrieval of all instances of type Module
with the same query. Similarly, the retrieval of all modules implementing c discover is
trivial since all the systems will understand what c discover is because they use the
common vocabulary.

Looking beyond CRime, by extending the ontology with appropriate sub-concepts
for Module, Interface, Function, Parameter and/or Scope, any other tool implementing
the framework and keeping the same design decisions with respect to the declarative
language can benefit from such an easy synchronization. In this context, the main
disadvantage becomes obvious when a more generic query that is agnostic to various
module libraries has to be fired. One such example is a query to retrieve all functions
across all different module libraries. The SPARQL formulation of such a query is pre-
sented in Figure 14.

The query from Figure 14 returns no results, even though the ProtoStack knowledge
stored in a Sesame triple store contains several functions of various types (c open,
c close, etc.). The explanation is that the reasoning capabilities in Sesame are limited.
For such a query to return results, the reasoner should be able to support rules and
reason on transitive relationships. In order to support such queries, ProtoStack has to
be extended with a reasoner that supports rules such as Jena or OWLIM. The OWLIM
compatible rule that returns valid results for the query in Figure 14 can be seen in
Figure 15.

Composition of services for information transport using ProtoStack. With
respect to the composition of services for information transport using ProtoStack we
distinguish among manual, semi-automatic and automatic composition.

Manual composition. By default, the ProtoStack system supports manual composi-
tion of communication services where all the necessary reasoning is performed by the
human. Given the CRime modules, the user composes a complex communication ser-
vice by selecting a subset of modules and connecting them in a meaningful way. The
responsibility for creating a correct and meaningful service lies with the user while
the machine in this case performs a post-composition validity checking as discussed in
Section 5.2.

Semi-automatic composition. By choosing a declarative language able to support
logic reasoning, ProtoStack can be used for semi-automatic service composition. For
instance, assume that the human user selects a module that is suitable for the de-
sired composed service. The tool can then suggest other compatible modules that can

ACM Transactions on Sensor Networks, Vol. 0, No. 0, Article 0, Publication date: 0.

A Framework for Dynamic Composition of Communication Services 0:23

1. PREFIX rdf: <http://www.w3.org/1999/02/22-rdf-syntax-ns#>
2. PREFIX cpan: <http://downlode.org/rdf/cpan/0.1/cpan.rdf#>
3. PREFIX crime: <http://sensors.ijs.si/crime#>
4. PREFIX rdfs: <http://www.w3.org/2000/01/rdf-schema#>
5. SELECT ?name ?category ?description
6. WHERE {
7. ?name rdf:type cpan:Module .
8. ?name crime:hasScope ?category .
9. ?name rdfs:comment ?description .
10. }
11. FILTER (?category = crime:multihop)

Fig. 16: SPARQL query that retrieves all multihop modules thus narrowing down the
search space for the user.

Table II: The mapping of Crime concepts in the Cyc knowledge base.
CRime concept Cyc Concept
Module ComputerProgramModule-CW
Interface InterfaceProgram
Function CodingFunction
Parameter CodingFunctionParameter
Scope / (created Scope-Module)

be used to build the composed service. Such modules can be identified based on a set
of rules used by the logic based machine reasoning. These rules progressively narrow
down the search space, thus guiding the user in the decision making process.

In order to illustrate the concept of semi-automatic composition of services using
ProtoStack, we assume that any CRime complex service can be composed by stacking
singlehop modules on top of singlehop modules, multihop modules on top of multihop
modules and multihop modules on top of singlehop ones. Stacking singlehop modules
on top of multihop modules should be forbidden. By default, using ProtoStack, such
constraints can be expressed by formulating two different SPARQL queries. In the case
when the user selected a singlehop module, the SPARQL query presented in Figure 13
is sufficient. In the case the user selected a multihop module, the system should narrow
the selection options only to multihop modules. To achieve this, the additional line
numbered 11 shown in Figure 16 has to be added to the query in Figure 13.

For more complex scenarios, having specific queries for each case can be prohibitive.
One solution can be to implement more intelligence in the system, therefore using a
more powerful reasoning engine. Such approach would permit running a single uni-
form query for all cases, only once by inserting the rules to the engine according to
which the query would be answered. For the proof of concept, the powerful Cyc [Ma-
tuszek et al. 2006] reasoning engine together with its tightly coupled knowledge base
(KB) is used. The CRime ontology was connected to Cyc’s knowledge base by mapping
the top five concepts to appropriate Cyc knowledge base concepts as can be seen in
Table II. Cyc knowledge base lacked a concept for Scope as used in CRime, therefore
the equivalent Scope-Module was created and inserted in the KB. The properties from
CRime were analogously mapped to Cyc predicates or created.

Three rules shown in Figure 17 were then added to Cyc KB specifying module com-
patibility based on the scope. Given the current setup consisting of Cyc’s KB without
application specific extensions, the following query is sufficient to retrieve all combi-
nations of two modules that can be stacked given the constraints we imposed: (#$on-
Abstract ?X ?Y).

ACM Transactions on Sensor Networks, Vol. 0, No. 0, Article 0, Publication date: 0.

0:24 C. Fortuna and M. Mohorcic

(#$implies
(#$and

(#$isa ?X #$ComputerProgramModule-CW)
(#$isa ?Y #$ComputerProgramModule-CW)
(#$hasScope ?Y #$multihop)
(#$hasScope ?x #$multihop)

)
(#$on-Abstract ?X ?Y)

)

(#$implies
(#$and

(#$isa ?X #$ComputerProgramModule-CW)
(#$isa ?Y #$ComputerProgramModule-CW)
(#$hasScope ?Y #$singlehop)
(#$hasScope ?x #$multihop)

)
(#$on-Abstract ?X ?Y)

)

(#$implies
(#$and

(#$isa ?X #$ComputerProgramModule-CW)
(#$isa ?Y #$ComputerProgramModule-CW)
(#$hasScope ?Y #$singlehop)
(#$hasScope ?x #$singlehop)

)
(#$on-Abstract ?X ?Y)

)

Fig. 17: Cyc KB rules for scope based stack composition.

Automatic composition. ProtoStack can be further extended for automatic communi-
cation service composition without user intervention. A set of services can be composed
automatically by providing some specifications of the desired outcome. The simplest
specification is to provide the name of the uppermost module and then allow the sys-
tem to figure out the required underlying modules. More complex specifications involve
specifying functionality and/or the required quality of service (QoS).

In order to support automatic composition, several components of the ProtoStack
system need to be extended. First and foremost, the descriptions of the services need
to be richer and more emphasis needs to be put on the input parameter description and
their allowed ranges. This requires ontology extension, additional Turtle statements in
the source files and the extension of the validity checking module. Furthermore, poten-
tially some heuristic for determining values for parameters will need to be employed
[Fortuna et al. 2008].

The complexity of the resulting system will increase but will open the possibility to
further explore aspects of self-assembling protocol stacks and information transport
services as discussed in [Fortuna and Mohorcic 2010][Fortuna and Mohorcic 2008].
For instance, consider the following use case. Two nodes (if we refer to embedded or
sensor networks) or two terminals (if we refer to mobile communication services) are
in the range of each other, can detect each other but cannot establish a communication
because each uses a different protocol stack. Both nodes can communicate with a co-
ordinator (gateway) or an access point and can provide a description of their current
software and possibly hardware configuration. The coordinator/access point could then
automatically find the services needed to compose the required protocol stack and send
it to one or both nodes. Finally, after the protocol stack reconfiguration, the nodes will

ACM Transactions on Sensor Networks, Vol. 0, No. 0, Article 0, Publication date: 0.

A Framework for Dynamic Composition of Communication Services 0:25

be able to communicate directly thus making use of radio resources and reduce overall
energy consumption in the network.

To implement the described use case, additional description of the modules that
compose a stack is needed. The knowledge base should contain information about the
modules that are appropriate for wireless communication, that offer functionality for
reliable communication, etc. Then, appropriate rules stating what reliable communi-
cation means need to be inserted (i.e. if at least one module in the stack offers such
functionality, then the stack is reliable). Given a query asking for wireless, reliable,
multihop stack, a set of candidate stacks should be assembled and presented to the
user (human or machine).

7. SUPPORT FOR COGNITIVE NETWORKING
In this section, we refer to cognitive networks as sensor networks that implement the
cognitive cycle consisting of the sense, plan, learn, decide and act states described for
instance in [Fortuna and Mohorčič 2009b]. We define the use case as follows. The sen-
sors forming the network are sensing the link by observing the instant LQI (link qual-
ity indicator) and RSSI (received signal strength indication) values provided by the
radio transceivers and/or snooping into all the messages received from the neighbors
and monitoring sequence numbers (see Figure 18). In a more advanced scenario where
a cognitive radio performing more advanced energy detection or channel occupancy de-
tection can also be used to sense. The planing and the learning states can materialize
in models, estimators or predictors of the link quality. For instance, a moving average
of the sensed properties can be maintained to be able to tell more about the link than
provided by an instant measurement. Additionally, simple prediction models such as
linear regression can be learnt over time from the sensed parameters. The decide state
can materialize in the routing algorithm that selects the best route. With traditional
wired networks, a decision can be made based on a shortest path (SP) policy which
is performed by the SP routing algorithm. However, in wireless networks, the deci-
sion can be made by the SP routing algorithm taking into account sensed (i.e. instant
RSSI) or learned (i.e. prediction provided by the linear regression) information or by
other algorithms such as minimum transmission (MT) that may give less weight to the
hop count and more to the scores provided by the link quality estimators. The act state
consists of sending the packet on the route selected by the decider.

The cognitive networking use case, on which we show the advantage of using tools
such as ProtoStack, considers running extensive experiments in which the options
for the plan, learn and decide phases of the cognitive cycle are extensively explored
to learn and understand more about the multihop performance of changing network
topologies determined by varying link quality. As shown in the literature [Woo et al.
2003], [Tavakoli and Culler 2009], [Kim et al. 2011], [Srinivasan et al. 2010], [Carles
et al. 2010] and [Baccour et al. 2012], these kind of explorations need to be performed
frequently as new transceivers and more powerful microprocessors supporting more
advanced features are used by sensor nodes. Often, the resulting implementations
reflect in standardization efforts such as IETF drafts [Tavakoli and Culler 2009] [Kim
et al. 2011].

The design space for understanding and optimizing advanced routing in wireless
networks along the stages of the cognitive cycle is large and labor intensive. Figure
18 illustrates this space and possible combinations for a selected set of instantiations
of the cognitive cycle. Sensing of a choice of link properties such as RSSI, LQI or re-
ceived frames can be coupled with any planning and learning techniques that estimate
the link quality and with any of the decision techniques. More choices that further in-
crease the design space can be found in [Baccour et al. 2012], [Woo et al. 2003], etc.
ProtoStack decreases the overhead and required effort for exploring this space as fol-

ACM Transactions on Sensor Networks, Vol. 0, No. 0, Article 0, Publication date: 0.

0:26 C. Fortuna and M. Mohorcic

Fig. 18: Example LQE and routing protocols relevant for a cognitive networking sce-
nario.

lows. First, it implements 5 link quality estimation (LQE) modules (see Figure 19a):
c link stats, c lqe ma, c lqe ewma, c lqe wmewma and c lqe linregr which correspond
to link statistics of average and standard deviation of RSSI and LQI, link quality esti-
mation using moving average (MA), estimation using exponentially weighted moving
average (EWMA), link quality estimation using window mean with EWMA and link
estimation based on linear regression, respectively. These modules include adjustable
parameters such as time window t size for the moving average estimator and α for
the EWMA estimator. Each of these modules fills in a data structure named neigh-
bor list located in the common pipe structure described in Section 3.1. The neighbor
list contains a list of all neighbors from which the current node N heard messages. Be-
sides the neighbor’s Rime address, the data structure holds time averaged RSSI and
LQI and a cost. This cost is computed differently, depending on which software LQE
is being used. CRime’s c multihop service extends the routing table with a cost addi-
tionally to the already existing hop count. This routing table is also contained in the
pipe structure. Besides supporting the shortest path routing, CRime’s c multihop can
thus be configured to use shortest path based on threshholding where instant or time
averaged LQI and RSSI values are used from the pipe structure’s neighbor list that is
filled in by the LQE modules and shared with all the other modules. Additionally, the
cost from the route table can be set based on values provided by the LQE estimators
according to the strategy of the decider. Figure 19b lists all the possible combinations
of a data stack using the elements that instantiate the cognitive cycle as discussed so
far in this section.

As a reference scenario to explain the benefits of using the ProtoStack tool, we con-
sider [Woo et al. 2003] in which the authors were looking for a simple and reliable link
estimator (or predictor in machine learning terminology) that would be used by the
routing protocol in deciding which route to select. Since the search space for finding
and evaluating the estimator and the performance of the routing algorithm is very
large, the authors take a four stage approach: 1) determine empirical link characteris-
tics, 2) investigate link estimation techniques, 3) design a neighbor management policy
and 4) design and implement the routing framework. This approach can be carried out
using the ProtoStack tool as follows.

Empirical link characteristics determination. Empirical link characterization stands
at the basis of any work related to multihop wireless network design and is performed
in several works such as [Woo et al. 2003], [Srinivasan et al. 2010], [Carles et al. 2010]
to name a few. This stage is carried out using real hardware and the results vary
across transceivers and deployment environments, so it has to be redone frequently.
The result of this step is a statistical model of the channel on which the design and
evaluation of LQE estimators is based on. ProtoStack can be used in this stage of
work in two ways. First, it can be used to ease the configuration and deployment of

ACM Transactions on Sensor Networks, Vol. 0, No. 0, Article 0, Publication date: 0.

A Framework for Dynamic Composition of Communication Services 0:27

(a) Dependency graph of a stack achieving multihop communication using ProtoStack
with focus on the cognitive networking options for the data transmission functionality
represented by the Data stack.

<c channel, c broadcast, c link stats, c multihop, c mesh, c echo app >
<c channel, c broadcast, c link stats, c lqe ma, c multihop, c mesh, c echo app >
<c channel, c broadcast, c link stats, c lqe ewma, c multihop, c mesh, c echo app>
<c channel, c broadcast, c link stats, c lqe wmewma, c multihop, c mesh, c echo app>
<c channel, c broadcast, c link stats, c lqe linregr, c multihop, c mesh, c echo app>
<c channel, c polite, c link stats, c multihop, c mesh, c echo app>
<c channel, c polite, c link stats, c lqe ma, c multihop, c mesh, c echo app>
<c channel, c polite, c link stats, c lqe ewma, c multihop, c mesh, c echo app>
<c channel, c politet, c link stats, c lqe wmewma, c multihop, c mesh, c echo app>
<c channel, c polite, c link stats, c lqe linregr, c multihop, c mesh, c echo app>

(b) List of possible composition options for the data stack using selected services offered
by the ProtoStack tool.

Fig. 19: Dependency graph of a stack achieving multihop communication using Proto-
Stack with focus on the cognitive networking options for the data transmission func-
tionality represented by the Data stack.

the experiment where a <c channel, c broadcast, c link stats, c echo app>stack would
achieve the required function. Second, and most relevant for research with cognitive
networks, the same stack can be used to enable each node to build automatically a
statistical model for the link quality. Rather than manually computing the link model
and subsequently use the same model on all nodes, each node can build its own model.

Link estimation techniques. Link estimation techniques are typically designed using
a statistical model of the link that is often based on purely theoretical model and some-
times in empirical observation such as in the works considered in this paper. Since the
number of link estimation techniques tends to be large and each has at least one tun-
ing parameter, their evaluation is performed in a simulator using a statistical model.
With ProtoStack, the cost for empirically evaluating these techniques is lowered be-
cause 1) a new link estimator is not significantly harder to implement then it would
be in a simulator and 2) once implemented, this estimator can be even remotely added
to a stack and configured via a graphical user interface. With the increasing number
of available sensor testbeds and their increasing size [Sanchez et al. 2013], and with a
tool such as ProtoStack that adds a simulation-like interface to them, empirical eval-

ACM Transactions on Sensor Networks, Vol. 0, No. 0, Article 0, Publication date: 0.

0:28 C. Fortuna and M. Mohorcic

uations should become more prevalent also yielding more realistic results compared
to those obtained by simulations. Since link estimation techniques embody stages of
the cognitive cycle, and ProtoStack already includes advanced link quality estimators
such a the one based on linear regression (c lqe linregr), also empirical experimenta-
tion with self-adaptive and self-learning strategies should become easier.

Neighbor management policy. Neighbor management policies aim at finding the best
way for a node to determine, over time, how large a neighbor table should be and which
nodes should be added to this table. The size of the table as well as the periodic refresh
time are parameters in ProtoStack and can be varied across experiments to have an
empirical validation of its effect on routing. The currently available LQE estimation
modules are in charge of filling the neighbor list of the pipe structure, each of them
using a certain strategy. These modules would need to be extended or new ones added
with various approaches to neighbor addition and eviction to support experiments con-
cerning neighbor management policies.

Design and implement the routing framework. The design and implementation of
the routing framework has to take into account the previous three stages and also to
deal with routing specific aspects such as routing strategy and algorithm, table man-
agement, cycle detection, etc. A small set of routing protocols using the most promising
link estimation techniques is typically evaluated empirically. Using any of the stacks
listed in Figure 19, ProtoStack can support easy experiment configuration, deploy-
ment, execution and monitoring of shortest path, shortest path considering link qual-
ity and minimum transmission protocols.

8. EXPERIMENTAL EVALUATION WITH RESPECT TO THE BASELINE
In this section, we quantitatively evaluate the cost of composeability introduced by the
CRime architecture to the baseline which is Rime. To complement the quantitative
evaluation of the ProtoStack tool we conclude with remarks related to the usability
of ProtoStack based on feedback received from first time users. Additional evaluation,
comparison and discussion to the related work that puts our work into context is pro-
vided in Section 9.

8.1. Quantitative assessment of the cost of composeability
A fair quantitative assessment of the cost of composeability brought in ProtoStack
by the CRime module library can only be based on a direct comparison between the
CRime and Rime architectures because Rime is the closest non-composeable reference
implementation. Additional comparison to modular and flexible architectures and the
reference implementations of the provided abstractions is provided in Section 9. Rime
was one of the first communication architectures for sensor networks to provide a set of
abstractions in order to support adaptive communication. Compared to non-adaptive
architectures, Rime incurred higher execution time [Dunkels et al. 2007]. CRime is, to
the best of our knowledge, the first architecture that supports dynamic composition of
services for sensor networks. Through dynamic composition of services, CRime helps
to speed up the design, prototype and evaluation of new communication services. Com-
pared to Rime, CRime introduces new abstractions which reflect in overhead in terms
of code size, execution time and power consumption. In the following, we quantify this
overhead focusing on a relevant subset of modules and the example applications that
include them. The selected Rime primitives against which we compare are abc, broad-
cast, polite, unicast and multihop, while the Rime applications examples are exam-
ple name of the application.

ACM Transactions on Sensor Networks, Vol. 0, No. 0, Article 0, Publication date: 0.

A Framework for Dynamic Composition of Communication Services 0:29

Table III: Comparison of Rime and CRime components with respect to code size (.text),
initialized static variables (.data) and uninitialized static variables (.bss). All values
are in bytes.

Rime components CRime components
Name of compo-
nent (.o) .text [B] .data [B] .bss [B] Name of compo-

nent (.o) .text [B] .data [B] .bss [B]

abc 192 0 0 c abc 228 0 0
broadcast 248 0 0 c broadcast 196 0 0
polite 604 0 0 c polite 580 0 0
unicast 252 0 0 c unicast 236 0 0
multihop 468 0 0 c multihop 652 0 0
stbroadcast 348 0 0
ipolite 712 0 0
stunicast 512 0 0

c link stats 1117 0 0
c lqe ma 1717 0 4
c lqe ewma 1689 0 4
c lqe wmewma 1641 0 4
c lqe linregr 1233 0 0
c echo app 173 0 0
amodule 2572 0 4
stack 3760 24 0

Experimental setup. In order to compare the components of the Rime stack
against the components of the CRime stack in terms of the image size we use the
physical testbed based on the VESNA sensor platform which is used in several wire-
less sensor network testbeds in Slovenia [Smolnikar et al. 2011]. The VESNA sensor
node is equipped with a ST ARM Cortex M3 32 bit microcontroller running at up to
72 MHz, 1 MB of FLASH, 96 kB of SRAM and 128kB of fast (2,25 MB/s) non-volatile
MRAM memory (NVRAM). The hardware has a fully modular design and can be pro-
grammed via RS-232 compatible interface or standard JTAG providing debug capabil-
ities. For the numbers provided in this chapter, we used the following experimental
setup: VESNA sensor node with TI CC1101 radio module and a Contiki 2.5 OS port
connected via serial line to a Lenovo X200 machine (Intel Core Duo CPU @2.53 GHz
with 4GB or RAM). The notebook runs Windows 7 Enterprise on the computer on
which we installed the open source development environment consisting of Cygwin,
Codesourcery tool-chain, OpenOCD and Eclipse Helios.

Image size. We first compare the components of the Rime stack against the compo-
nents of the CRime stack in terms of the image size. Table III summarizes the size of
the code (.text), the size of the initialized (.data) and non-initialized (.bss) static vari-
ables. It can be seen that the Rime and CRime components differ only in the size of the
code.

The c abc code size is 36 bytes larger than the code size of the corresponding abc mod-
ule. This is mainly due to the fact that the c abc module implements some functional-
ity, namely the c abc recv function, the correspondent of which in the Rime version is
implemented by the module above or by the application. The multihop communication
primitive is notably larger in CRime compared to Rime. This is due to several calls to
a function implemented by the amodule block, which sets values in the pipe structure.
The code footprint could be reduced if we optimized only for that, however, we also
optimized for maintainability and easy debugging.

For the broadcast, polite and unicast communication primitives, the CRime version
results in smaller code size than the Rime version. This is because in CRime the func-
tions do not directly call corresponding functions from the modules below. In CRime

ACM Transactions on Sensor Networks, Vol. 0, No. 0, Article 0, Publication date: 0.

0:30 C. Fortuna and M. Mohorcic

Table IV: The code size (.text), initialized static variables (.data) and uninitialized
static variables (.bss) of five Rime example applications. All values are in bytes.

Application name Bin fsize [B] .text [B] .data [B] .bss [B]
example-abc 81188 79056 1636 5112
example-broadcast 81260 79128 1636 5116
example-polite 83116 80984 1636 5152
example-unicast 81500 79368 1636 5116
example-multihop 83260 81112 1652 5796

Table V: The code size (.text), initialized static variables (.data) and uninitialized static
variables (.bss) of five CRime example applications (the applications are compatible
and do the same thing as the Rime applications from Table IV). All values are in bytes.

Application name Bin fsize [B] .text [B] .data [B] .bss [B]
example-crime(c abc) 94932 92800 1636 5112
example-crime(c broadcast) 94976 92840 1640 5108
example-crime(c polite) 96123 94000 1636 5112
example-crime(c unicast) 95364 93224 1642 5108
example-crime(c multihop) 97040 94880 1664 5816

this overhead is solved by the amodule component. For instance, if we add in the
c broadcast module explicit calls to the c abc module, each such call increases the size
of the code by 8 bytes.

The stbroadcast, ipolite and stunicast modules from Rime have no direct equiva-
lent in CRime. As discussed in the architectural comparison between the modules (see
Section 3.2), the functionality of these is replaced by triggers and by the modular com-
position of the stack. The two CRime only specific modules, which enable modularity,
are the amodule and the stack. The code footprint of these is relatively large compared
to the other modules. They also use some static variables as can be seen in the cor-
responding .data and .bss columns of Table III. The set of 5 link estimation modules
present in CRime and described in Section 7 have relatively larger sizes of 1117 to
1689 bytes mostly due to the more complex application logic and the additional data
structures required to store the statistics and learned models. The c echo app module
implements a very simple functionality of printing the received packets, therefore it
has the smallest size of 173 bytes.

Some applications using the Rime modules are already available with the Contiki
code and we created a similar application (e.g. dummy sending of packets) entitled
example-crime which we use with the composed stacks. The evaluation of the appli-
cation memory footprint for the two stacks is listed in Table IV and in Table V, while
the difference is listed in Table VI. It can be seen that the size of the code of the ap-
plications which use CRime stacks is about 16 to 17% larger (13.000 bytes) while the
absolute size difference of the initialized and uninitialized data sections is below 0.1%.

Processing speed. We expect that CRime is slower than Rime in terms of process-
ing speed due to the overhead the stack and amodule abstractions add. In Table VII
we list the evaluation of the processing speed for opening and closing a connection as
well as for sending and receiving packets with the two stacks. We used the abc and
c abc communication primitives for the evaluation.

It can be seen that in both stacks, the most time consuming operation is sending a
packet. Rime needs on average 104 µs to send one packet while CRime needs 380 µs,
an increase by a factor of 3.5. If we consider the sequence of operations openÝ sendÝ
recvÝ close, it can be seen that Rime spends 40% of the time sending the packet while
CRime uses 61% of the time for the same task. In Rime, the second most time con-

ACM Transactions on Sensor Networks, Vol. 0, No. 0, Article 0, Publication date: 0.

A Framework for Dynamic Composition of Communication Services 0:31

Table VI: The cost of CRime example application in terms of code size (.text), initialized
static variables (.data) and uninitialized static variables (.bss). Data compiled based
on the values in Table IV and Table V.

Difference between application using
the CRime stack and the equivalent Bin fsize .text .data .bss

application using the Rime stack [B] [%] [B] [%] [B] [%] [B] [%]
c abc - abc 13744 16.9 13744 17.3 0 0.00 0 0.00
c broadcast - broadcast 13716 16.8 13712 17.3 4 0.02 -8 -0.01
c polite - polite 13016 15.6 13016 16.0 0 0.00 -40 -0.07
c unicast - unicast 13864 17.0 13856 17.4 8 0.04 -8 -0.01
c multihop - multihop 13780 16.5 13768 16.9 12 0.07 20 0.03

Table VII: CRime vs Rime processing speed (results averaged over 100 runs).
Rime operations CRime operations

Name Duration[µs] Duration[%] Name Duration[µs] Duration[%]
open 59.0 23.0 open 107.0 17.7
send 104.0 40.5 send 380.0 61.0
recv 71.5 27.8 recv 96.5 15.5
close 22.0 8.5 close 67.0 5.7
Total 256.5 99.8 622 99.9

suming operation is processing the received packet throughout the stack. The CRime
open, close and recv operations are relatively simple; the overhead comes mostly from
the code necessary to propagate through the tree. The CRime send operation is more
complex and incurs higher processing time mostly for the following two reasons. First,
the operation is typically sent over one stack. This means that some checking needs to
be done so that the operation propagates only on the path of the tree corresponding to
that stack and not over the entire tree. Second, this operation needs to handle triggers,
for which additional instructions need to be executed.

The total amount of time needed by Rime to execute the sequence of operations
openÝ sendÝ recvÝ close is 256 µs. CRime needs 622 µs for the same sequence; this
is an execution time which is a factor of 2.4 higher.

Next, we take a closer look at CRime and the overheads introduced by the amodule
and stack abstractions in terms of processing speed. Table VIII lists the name of the
four basic operations in the first column and the overall duration in the second col-
umn. In the third column, the names of the CRime functions called in order to execute
the functionality of the c abc stack are listed. For instance, for the open operation, the
sequence of functions c abc open and c channel open are called and their cumulative
duration is 73 µs, as listed in the fourth column. The last column lists the overhead
introduced by the amodule and stack abstractions (i.e. walking through the tree, per-
forming checks, etc.). This last column is the difference between the second and the
fourth, namely between the duration of the overall operation and the duration of the
executed functions.

It can be clearly seen in this breakdown in Table VIII that the overhead for the send
operation where checks for walking through the tree and trigger handling is quite
high, represent 80% of the total duration of the operation (304 µs out of 380 µs). The
overheads for receiving a packet and closing a connection are also high, in relative
terms representing 87% and 61% of the total duration of the respective operations. The
smallest relative overhead occurs for the open operation, representing 31% of the total
duration. The differences between the overheads of the four operations are justified by

ACM Transactions on Sensor Networks, Vol. 0, No. 0, Article 0, Publication date: 0.

0:32 C. Fortuna and M. Mohorcic

Table VIII: The cost of stack and amodule abstractions in terms of processing speed
(results averaged over 100 runs).

CRime operations
Name of Duration of Name of the executed Duration of amodule & stack
operation the overall functions the executed overhead

operation [µs] functions [µs] [µs] [%]
open 107.0 c abc open, c channel open 73.0 34.0 31
send 380.0 c abc send, c rime output 76.0 304.0 80
recv 96.5 c abc recv, c abc input 12.0 84.5 87
close 67.0 c abc close, c channel close 26.0 41.0 61

Table IX: CRime vs Rime energy consumption.
Rime power consumption CRime power consumption

Application name Consumed power Application name Consumed power ∆P /PR

(PR) [mW] example crime (PR) [mW]
example abc 89.96 (c abc) 91.84 0.020
example broadcast 88.96 (c broadcast) 90.21 0.014
example polite 88.70 (c polite) 89.58 0.010
example unicast 90.09 (c unicast) 91.84 0.019
example multihop 91.84 (c multihop) 93.59 0.019

the different implementations of the tree walking algorithms (for the send operation
the trigger handling also has to be accounted for).

Power consumption. In order to evaluate the cost of CRime in terms of energy
consumption, we performed measurements using a Tektronix TDS5104B oscilloscope.
We measured the power consumption of representative Rime and equivalent CRime
applications. Each application was run 10 times for 100 ms and the results are sum-
marized in Table IX.

It can be seen that, on average, CRime consumes 1.6% more energy than Rime. In
other words, if a battery powered node could run for 365 days sending messages using
the Rime stack, the same node could only run for about 360 days sending messages
with the CRime stack.

8.2. Qualitative Assessment of ProtoStack
The workbench and the CRime module library are part of the ProtoStack tool. The first
is meant to make its use more user friendly by providing a composition and configura-
tion environment similar to those provided by graphical simulation tools. Furthermore,
the workbench allows module developers and experimenters to focus on stack compo-
sition rather than on coding and debugging. The CRime module library is developed
to support dynamic composition and configuration of protocol stacks and the degree to
which this has been achieved directly reflects in the workbench. For instance, the tool-
bar is a direct reflection of the CRime modules. In order to evaluate the usability and
user friendliness of ProtoStack and to collect some feedback on how to improve the
overall tool, we carried out a small qualitative assessment involving a group of first
time users which were not involved in any aspect of the development of the frame-
work of ProtoStack. Still, they are familiar with the basic goals and principles that are
driving the development of such tool as well as with the domain specific background
knowledge, so we could refer to them as representative end users/experimenters. This
qualitative assessment is thus by no means a thorough and statistically representative
study but it rather aims to help the readers to get a feeling on the friendliness and the
learning curve of the tool.

ACM Transactions on Sensor Networks, Vol. 0, No. 0, Article 0, Publication date: 0.

A Framework for Dynamic Composition of Communication Services 0:33

Methodology. In order to collect feedback about the usability of ProtoStack we de-
cided to interview potential users of the tool. In doing so, we were faced with two
challenges:

— How to determine the target users? ProtoStack is primarily targeted at the research
community, particularly at researchers interested in one or more of the following ar-
eas: sensor network protocols, modular protocol stacks, service oriented networks,
cognitive networks. Among researchers working in these or related areas those that
were already using the Contiki OS in their experiments can be considered as ad-
vanced users.

— How to perform a statistically significant study? The research community we are
targeting is relatively small4.
To perform a statistically significant study, we would need to identify interested re-
searchers from the research areas mentioned above and incentivize them to use the
tool and provide feedback, at the same time taking care for statistical significance
also in terms of their actual experience level, background knowledge, and other pa-
rameters that might influence the opinion. Doing this would prove tedious task with
questionable number and quality of feedbacks, especially if carried out remotely by
some automated means, so we intentionally opted for what we refer to as represen-
tative and not statistically significant study.

The collected feedback. The first step in our progressive feedback collection in-
volved preparing relevant questionnaires and performing interviews with the mem-
bers of our lab. Based on the experience from this step, the next step, involving project
partners and interested external users, is under preparation.

The questionnaire in the first step consisted of two parts. The first part included a
set of 12 questions meant to profile the user and his/her background experience. In
the second part of the questionnaire, an introduction of the tool is provided, a training
example, two tasks and 10 questions meant to help evaluating and improving the Pro-
toStack tool. The training example was performed by the developer of the tool for each
user separately. The developer also had to answer a set of three questions about the
way the user was using the tool.

The study groups profiles are summarized in Table X and Table XI. The group con-
sisted of six users aged 23-30. The users completed BSc or MSc in a technical domain
ranging from computer science to electronics. All users were working in research, one
was just starting, most had 2 years experience and one had 5 years experience. Their
research interest varied from cognitive radio to semantic sensor web and most of them
were familiar with basic communication primitives as can be seen from Table X. Most
of the users had some previous experience with the Contiki OS and with the Rime and
TCP/IP protocol stack. Most of them were not familiar with the concept of ‘modular
stacks’and only half of them were familiar with the concept of ‘service composition’as
shown in the results summarized in Table XI.

The feedback received from the user group can be summarized as follows. All users
found the GUI sufficiently intuitive, mostly rating it with 4 points (out of 5). Sugges-
tions for improvement mostly referred to adding extra features such as the possibility
to download the configuration code and more pop-up messages following interactions
with the GUI. The toolbar was rated with 5 points (out of 5) for intuitiveness by all

4A typical high profile sensor networks conference attracts between 100 and 200 people. According to Google
Scholar, the number of citations attracted by the paper introducing the Click modular router is ~2000 over
13 years. According to the same source, the number of citations attracted by the paper introducing Contiki
OS since 2004 is ~1000. The seminal work on cognitive networks has attracted ~500 citations since 2005.
The available download figures for the Contiki OS are ~300 per week, including commercial users.

ACM Transactions on Sensor Networks, Vol. 0, No. 0, Article 0, Publication date: 0.

0:34 C. Fortuna and M. Mohorcic

Table X: The study group profile in terms of education, research interest and familiar-
ity with basic communication primitives.

UserID Age Education Research interest Familiarity with broadcast,
unicast, multihop, mesh

1 25 MSc Computer Science Semantic web, yes, yes, yes, maybe
semantic sensor web

2 24 BSc Telecomms Cognitive radio yes, yes, yes, yes
spectrum sensing

3 29 BSc Electronics Cognitive radio yes, yes, yes, yes
4 28 BSc Telecomms Web technologies yes, yes, yes, yes
5 23 BSc Inf. Tech. - yes, yes, yes, yes
6 30 BSc Telecomms Cognitive networks yes, yes, yes, yes

Table XI: The study group profile: in terms of experience with Contiki, Rime, TCP/IP,
modular stacks and composition of services).

UserID Contiki exp. Rime exp. TCP/IP Modular stack Composition of services
1 no no yes no no
2 yes yes yes no yes
3 yes no yes no no
4 yes yes yes yes yes
5 yes yes yes no no
6 yes yes yes yes yes

the users. The description provided for the modules seems to be sufficient for some
users and requires more details for others. It seems that users which have more expe-
rience with Contiki feel that there should be available also an extended description on
the right hand side of the workbench where space is currently used in a less efficient
way. The tool was confirmed to save time. According to the study it seems that users
that have previously used Contiki in their research work estimate that ProtoStack can
speed up the design of and experimentation with protocol stack by at least a factor of
two. It also looks like the tool increases flexibility with respect to the baseline Rime.

The users were observed performing the two tasks from the questionnaire. The first
task required them to set up a unicast communication stack while the second task re-
quired the set up of a multihop stack. The time to completion as well as the number
of failed saving attempts of a new stack were collected. It seems that both stacks were
fast to complete. The average completion time for the first task was 160 seconds with
less than 1 (0.83) error message on average. The average completion time for the sec-
ond task was slightly lower at 126 seconds with the average number of error messages
slightly above 1 (1.16). The complexity of the second task was slightly higher compared
to the first one, with more degrees of freedom. While some users were inspired by this
to create novel stacks that were valid, other users had difficulty creating valid stacks.
These users, for instance, found it unclear why in the case of a unicast stack, a broad-
cast module identifying the sender is also needed. This problem seems to be correlated
with the experience one has with communication stacks −the more experience, the less
problems in composing the stack.

9. COMPARISON TO AND EVALUATION WITH RESPECT TO RELATED WORK
The idea of composing communication services has already been investigated, albeit
using different naming, in several papers such as the X-Kernel [Hutchinson and Pe-
terson 1991], the Click modular router [Kohler et al. 2000], the role based architecture
(RBA) [Braden et al. 2003], the sensor network architecture (SNA) [Tavakoli et al.
2007b], the autonomic network architecture (ANA) [Bouabene et al. 2010], the infor-

ACM Transactions on Sensor Networks, Vol. 0, No. 0, Article 0, Publication date: 0.

A Framework for Dynamic Composition of Communication Services 0:35

mation driven architecture IDRA [De Poorter et al. 2011], REMORA [Taherkordi et al.
2011] and Rime.

The most relevant previous work related to this paper can be grouped in two main
clusters. One cluster comprises frameworks and tools which offer complete support for
experimentation with composeable stacks. Besides looking at the abstractions they in-
troduce to allow composeability, we also look at the composition model, the approach
to configuration and the implementation. This cluster includes the related work that
can be compared to the overall framework introduced by this paper. The second clus-
ter comprises existing work related to modular stacks where we pay attention to their
scope with respect to the layers of the OSI stack and other design aspects such as sup-
port for cross-layer design, header and payload manipulation, etc. This cluster includes
work that can be compared to the module library introduced by the paper. Detailed
analyses on how the proposed framework and the ProtoStack reference implementa-
tion relates to existing work is provided in Section 8.

9.1. Related experimentation tools
The most representative examples for this cluster are x-Kernel, Click, SNA, and
REMORA.

X-Kernel [Hutchinson and Peterson 1991] is an operating system kernel architecture
explicitly designed for constructing and composing network protocols. The x-Kernel
defines three abstractions used to implement protocols: protocol, session and message.
The protocol corresponds to a conventional network protocol such as TCP or IP, a ses-
sion is an instance of a protocol and messages are objects that move through session
and protocol objects. Protocol stacks are modelled as graphs which are configured ei-
ther using a textual graph description language, or a GUI. Based on the input, C code
for protocol instantiation and configuration is generated. X-Kernel has been used for
experimenting with the decomposition of large protocols into primitive building block
pieces, as a framework for designing and evaluating new protocols, and as a platform
for accessing heterogeneous collections of network services.

The Click modular router [Kohler et al. 2000] is a software architecture meant for
building flexible and configurable routers. Click was inspired by the x-Kernel, however,
it focuses on routers and uses different abstractions. Click uses elements as abstrac-
tions for packet processing units. Elements are then composed in a directed graph
structure using a declarative language for describing the graph or, more recently, the
Clicky GUI. The resulting file is then processed by a sequence of tools performing con-
figuration in several stages. Click is widely used for researching networking related
problems including composition of functionality.

The NEST project [NES 2014] focused on providing an open experimentation envi-
ronment that would accelerate the development of algorithms, services, and their com-
position into applications in the area of sensor networks. The experiences acquired
during the project led to the development of abstractions suitable for modularizing
sensor network stacks to enable easy protocol development and experimentation as
well as code re-use. For instance, in [Ee et al. 2006][Tavakoli et al. 2007b] the authors
aim at developing a modular network layer (MNL) for sensor networks by consider-
ing existing network layer protocols, finding common functionality and reimplement-
ing this functionality in a protocol independent manner. In this way, the same code
can be reused by several protocols and several protocols are able to exist at runtime
without prohibitive memory usage. Together with the work in [Polastre et al. 2005],
the aim was to build a modular architecture for sensor networks (SNA). In [Tavakoli
et al. 2007b] they argumented that a declarative programming model represents a
good mechanism for decoupling the application logic from the actual implementation
[Tavakoli et al. 2007b] thus helping the user and lowering the entry barrier in experi-

ACM Transactions on Sensor Networks, Vol. 0, No. 0, Article 0, Publication date: 0.

0:36 C. Fortuna and M. Mohorcic

Table XII: Comparison of tools which support the composition of communication ser-
vices from the perspective of the defined framework.

Name Workbench Declarative language Module library Physical testbed
X-Kernel 3 3 3 3
Click 3 3 3 3
NEST/SNA • 3 3 3
REMORA • 3 3 3
ProtoStack 3 3 3 3

mentation and development in the area of sensor networks. As a result, a declarative
sensor network (DSN) architecture that uses a high level declarative specification lan-
guage and a compiler to permit the user to specify an application was proposed in
[Tavakoli et al. 2007a]. The main problem solved by this work is the provision of an
easy way to programming sensor networks.

REMORA [Taherkordi et al. 2011] is a component based framework that aims to
provide a well structured programming paradigm to ease high-level software develop-
ment in wireless sensor networks. It provides a set of components implementing differ-
ent functionality and an XML syntax for describing these components. The REMORA
engine running on a development machine converts the component descriptions gen-
erated via the development box into a REMORA application that is then compiled.
The resulting application image is then distributed to sensor nodes which are locally
running the REMORA runtime, which is supporting the applications and provides
mechanisms for event management.

9.1.1. On the proposed framework. The contributions of our paper with respect to the
state of the art in this field include the formalization of the four component frame-
work that is generic enough and well suited for the design and experimentation with
dynamic composition of communication services. This claim is supported by the fact
that existing experimentation tools that have proved to be useful for stack compo-
sition by passing the test of time and having wide user communities evolved to fit
into such framework, although never formalized thus far. For instance, x-Kernel in-
troduced modular design principles for operating systems to support high speed net-
working. These principles enabled the modularization of protocols and correspond to
the module library described by our framework. The initially supporting Sun3 work-
stations and other, more recent, physical devices that can be used for experimentation
correspond to the physical testbed as described by the framework. The declarative
language corresponds to textual graph description language that allows description of
x-kernel protocols while the workbench corresponds to x-Kernel’s graph editor. Click
also evolved over time to support all four components as depicted in Table XII. With
respect to the area of sensor networks, the concepts and tools developed within or as a
result of the NEST project, including SNA, include all components but the workbench.
The more recent REMORA framework also excludes the workbench while ProtoStack
includes all four.

9.1.2. On the ProtoStack reference implementation. The comparison between the tools
which support the composition of communication services from the perspective of the
requirements identified in Section 2 is summarized in Table XIII. It can be seen that
all five tools address modularity, flexibility and easy programming. Reproducibility of
experiments seems to be explicitly addressed only by the ProtoStack tool. However,
x-Kernel and Click also provide some support in this respect through configuration
scripts which can be manually saved and re-used at a later time. To the best of our
knowledge, SNA does not currently address this requirement. With respect to remote

ACM Transactions on Sensor Networks, Vol. 0, No. 0, Article 0, Publication date: 0.

A Framework for Dynamic Composition of Communication Services 0:37

Table XIII: Comparison of tools which support composition of communication services
from the perspective of the requirements.

Name Modularity Flexibility Easy Programming Reproducibility Remote
of experiments experimentation

X-Kernel 3 3 3 3 •
Click 3 3 3 3 •
NEST/SNA 3 3 3 • •
REMORA 3 3 3 3 3
ProtoStack 3 3 3 3 3

experimentation support, only REMORA and ProtoStack explicitly address this aspect,
however there is a major difference between the approaches. REMORA assumes that
the application is composed from the available components on a development machine
and then distributed to the network of sensors. The REMORA development machine,
on which the user is working, has to be somehow connected to the network or sen-
sors most likely through a gateway. REMORA focuses on component assembly and
distribution and provides a code distribution use case. ProtoStack on the other hand
is fully web based and designed to support remote experimentation. With ProtoStack,
the sensor network can be located at one physical location, the server that renders the
workbench, has the module library, performs the consistency checking, etc can be lo-
cated at another physical location, while the user can be located at the third physical
location. This is a major difference with respect to other tools that all assume that the
user is physically located or connected to the actual development machine while Pro-
toStack, besides enabling that, also enables the user to be completely ignorant of any
development aspect and just focus on the composition and configuration.

A feature based comparison of ProtoStack, the reference implementation of the
framework we propose, with existing experimentation tools identified in Section 9.1,
is provided in Table XIV. It can be seen that, similar to the other tools, ProtoStack
also introduces a set of abstractions to support modularity. X-Kernel introduces three
abstractions, Click and REMORA introduce only one while ProtoStack also introduces
three. ProtoStack’s amodule seems closest to Click’s element, both implementing well
contained functionality. Specific to CRime is the pipe abstraction allowing powerful
cross-layer optimizations and cognitive networking. Additionally, ProtoStack’s stack
abstraction allows running concurrent protocol stacks. Similar to the first two tools,
ProtoStack supports user friendly configuration using a GUI and it uses a declarative
language as an intermediate abstraction between the GUI and the implementation
of the modules of the stack. While the other three systems use a graph composition
model, ProtoStack uses a tree model which seems to be sufficient for the current state
of the tool’s development.

To complement the first time user study provided in Section 8.2, we provide a
feature-based comparison of the GUIs offered by the existing tools in Table XV. In
order to visually compose and configure a protocol stack using the x-Kernel and Click
GUIs, the user must use a graph editor installed on the workstation while ProtoStack
allows this to be done in a browser irrespective of where the server that generates the
web page is located (i.e. on the workstation or somewhere in the cloud). This makes the
ProtoStack GUI independent of any operating system. Additionally, once a new amod-
ule is developed, this will be automatically added to the GUI by parsing the Turtle
comments written in the .c source file. No additional configuration or other operations
need to be performed by the user to see the upgrade. In summary, the ProtoStack GUI
fully benefits not only from the advantages of web technologies and, as a consequence,
of remote configuration, but also from the advantages of semantic web technologies
thus of increased interoperability and integration with federations.

ACM Transactions on Sensor Networks, Vol. 0, No. 0, Article 0, Publication date: 0.

0:38 C. Fortuna and M. Mohorcic

Table XIV: Comparison of related experimentation tools.
Project Abstraction Composition model Configuration Implementation
X-Kernel protocol, graph textual graph description C (minimal OO

session, language, graph editor style)
message + Auto-generated C code

Click element directed graph Click language for configura- C++
tion (declarative), Clicky GUI +
Auto- generated C++ code

REMORA components, graph declarative language C-like
+ Auto-generated C code

ProtoStack amodule, tree Graph editor + declarative C
pipe language + Auto-generated
stack C code

Table XV: Comparison of the GUIs offered by the existing tools.
Name Rendering Local OS dependent Auto-configurable
X-Kernel graph editor yes yes no
Click graph editor yes yes no
ProtoStack browser yes and no no yes

9.2. Related approaches to modular stacks
There are many papers about different ways to generalize protocol design and process-
ing so in this subsection we aim at providing a brief overview of those approaches that
are most related to our work as well as qualitative comparison. Thus, in addition to
the examples mentioned in the previous subsection (i.e. x-Kernel, Click, NEST/SNA
(including SP, MNL and DSN) and REMORA) which all include, besides other con-
tributions, also abstractions for modular stacks, we refer in the following also to the
dynamic network architecture (DNA) [O’Malley and Peterson 1992], role based archi-
tecture (RBA) [Braden et al. 2003], Rime [Dunkels et al. 2007], autonomic network
architecture (ANA) [Bouabene et al. 2010] and the information driven architecture
(IDRA) [De Poorter et al. 2011].

DNA [O’Malley and Peterson 1992] is an architecture that builds on the x-Kernel
that provides a fine grained modularization of protocol functionalities, enables the
construction of complex protocols by connecting the modules in complex graphs and
enables the application to select the topology of the protocol graph. ProtoStack is quite
similar in the way that it also enables the composition of CRime modules into more
complex functionality, however, this composition is performed by the user in the cur-
rent implementation. Additionally, ProtoStack provides architectural support for au-
tomating this composition as discussed in the use case presented in Section 6.

The authors of RBS [Braden et al. 2003] noticed that with traditional layered archi-
tectures, new services fit poorly into the existing layered structure. They provide ex-
amples of inter-layer protocols such as multi-protocol label switching (MPLS) at layer
2.5, IPsec at layer 3.5 and transport layer security at layer 4.5. In order to provide
architectural support for adding new services, the authors introduce the role and the
role-specific header (RBH) concepts. The role abstraction corresponds to a modular pro-
tocol unit that allows splitting network functionality in smaller units than traditional
layered architecture allow. A set of role-specific headers form a data structure that cor-
responds to a sequence of traditional packet headers with the exception that RBHs are
not removed once they have been inspected by a role. The authors estimate that the
exact functional breakdown in roles is hard to pre-determine but experience will help
with the modularization. Their estimate was that a real network using RBA would
need a relatively few well known roles that are standardized.

ACM Transactions on Sensor Networks, Vol. 0, No. 0, Article 0, Publication date: 0.

A Framework for Dynamic Composition of Communication Services 0:39

The Rime protocol stack [Dunkels et al. 2007] provides a set of communication prim-
itives for sensor networks which are arranged in a layered fashion, where the more
complex communication services are implemented using the less complex ones. The
conceptual model behind Rime is modular and assumes static configuration of the sets
of modules. Rime services are somewhat similar to the roles in RBH and, same as
RBH, decouples functionality from header generation. While RBH is very generic and
provides no reference implementation, Rime incorporates concepts from RBH, adapts
them to the domain of sensor networks and provides a reference implementation. Be-
ing inspired by Rime, CRime also incorporates some of the concepts from RBH and
additionally introduces three concepts that enable dynamic composition and configu-
ration of communication services, which is not supported by Rime.

The authors of ANA [Bouabene et al. 2010], introduce a set of generic abstractions
that allow for the coexistance of multiple and diverse networking styles and protocols
from clean slate design approaches, including modular network stacks, to legacy in-
ternet stacks. The aim is to support functional scaling which means that a network
is able to extend both horizontally (adding more functionality) as well as vertically
(different ways of integrating abundant functionality). In order to achieve this, four
abstractions have been introduced: network compartment, information channel, func-
tional block and information dispatch point. A network compartment is in a way a slice
or a part of a network consisting of several nodes that are using any combination of
addressing, naming, routing, networking mechanisms, protocols, packet formats, etc.
However, these compartments must support a generic API that wraps their internal
operation with generic constructs. For instance, a set of sensor nodes running 6LoW-
PAN could form a network compartment while a set of machines running an IPv4 stack
could form a second compartment. These two compartments would interact through a
generic API. The information channel represents an abstraction for the communication
channel provided inside a network compartment such as unicast, multicast, reliable
stream, etc. The functional block corresponds to a protocol entity that generates, con-
sumes, processes and forwards information. The functional blocks can take the form
of an algorithm or an entire protocol, i.e. their granularity is not specified in advance
by the architecture. Finally, the information dispatch point that provides a mechanism
to access the functional blocks to which they are attached. The binding of an infor-
mation dispatch point is dynamic and can change over time as the network stack is
reconfigured.

CRime and ANA share the concepts of modularization and composition of services,
however the mechanisms for achieving these are different. While ANA’s functional
blocks are similar to CRime’s amodules, the other abstractions introduced by ANA are
not present in CRime as such. The ANA framework essentially organizes network
functionality in modules and in slices. Besides supporting modularity through the
functional blocks it also supports virtualization through the network compartments.
CRime on the other hand can run multiple network stacks in parallel on the same radio
interface, it supports parallelization rather than virtualization. Additionally, ANA also
supports heterogeneity of networks though the API exposed by the network compart-
ments. ANA targets traditional networks, its aim is to support autonomous networks
that can self-assemble and the reference implementation is meant for Linux worksta-
tions. CRime, on the other hand, targets constrained devices and the aim is to provide
modularity. In order to enable autonomy, ANA provides a mechanism to search for
functional blocks (i.e. functional blocks are labeled, thus can be looked for based on la-
bels). CRime amodules are on the other hand annotated using semantic web language.
As a result, the CRime modules are not only searchable on the server, but they can also
be reasoned about to eventually increase the autonomy of the network as discussed in
the use case presented in Section 6.

ACM Transactions on Sensor Networks, Vol. 0, No. 0, Article 0, Publication date: 0.

0:40 C. Fortuna and M. Mohorcic

In IDRA [De Poorter et al. 2011], the authors propose a networking architecture
that that aims to reduce the complexity of developing new protocols for wireless sensor
networks, support advanced network requirements such as QoS and support hetero-
geneous networks. The main abstractions introduced by IDRA are the information ex-
change, packet facade, shared queue, information waiting space and classifier. Through
the information exchange abstraction, the creation of packets is delegated to the sys-
tem instead of being handled by each protocol as is the case with the layered model.
The packet facade is the means through which protocols interact with packets by set-
ting or reading packet attributes such as destination, time to live, etc. These packet
attributes are stored in packet part descriptors that describe how and where attributes
are stored in a header. The shared queue is a system wide shared packet buffer that
can be accessed by any protocol, thus providing architectural support for cross-layer
information exchange and minimizing resource utilization on already constrained de-
vices. The information waiting space is an abstraction that enables the system to ag-
gregate data that are not time sensitive, from multiple protocols, to achieve energy
efficiency and support increased throughput. IDRA is able to support multiple protocol
stacks running at the same time and enables run-time reconfiguration of these stacks.
In IDRA, the protocols that process the packets are selected by a classifier based on
pre-specified filters.

IDRA takes a more generic approach to modularity compared to the CRime was de-
signed to do. As a result, IDRA provides full flexibility with respect to packet process-
ing, making it possible to use different protocols to process two different packets com-
ing from the same protocol from the sending device, and it can use different networks
stacks for sending and receiving packets. IDRA packet processing modules and their
sequence is determined locally on the node by the classifier after they have registered
their filters, however IDRA does not explicitly address the labelling or descriptions of
the packet processors in the sense ANA and ProtoStack do. From the perspective of
discoverability of components and the use of reasoning techniques for stack composi-
tion, ProtoStack, REMORA and ANA exhibit a higher degree of automation. Figure 20
provides a relative plot of the related work discussed so far in terms of flexibility and
automation. While most of the related work provide conceptualizations that enable a
higher degree of flexibility in terms of networking (run time) recomposition and recon-
figuration, ProtoStack is superior in terms of supporting automation in the sense of
providing architectural support for reaching the goal of machine reasoning for protocol
stack composition as described in Section 6.

Fig. 20: Related work according to the supported flexibility and automation.

ACM Transactions on Sensor Networks, Vol. 0, No. 0, Article 0, Publication date: 0.

A Framework for Dynamic Composition of Communication Services 0:41

A direct quantitative comparison of ProtoStack with most of the described ap-
proaches related to modular composition of protocol stacks is not possible to do either
because they are not targeted to sensor networks, or because they are conceptually
different. IDRA, however, provides a reference implementation for wireless sensor sys-
tems that enables a rough comparison to CRime in terms of the overhead the IDRA
system introduces on the sensor node and thus indicates the operation costs for higher
degree of flexibility. IDRA’s code size amounts to 27kB while CRime’s amounts to al-
most 7kB (note that IDRA is implemented in TinyOS while CRime is implemented in
Contiki OS). Obviously, the increased flexibility of the IDRA system has to incur a cost
and increased code size is part of it. The combined IDRA and radio overhead for send-
ing a packet on a TinyOS node with a CC2420 transceiver is 12 ms while the CRime
and radio overhead on a VESNA node with a CC1101 transceiver is 380 µs.

10. CONCLUSIONS
In this paper we proposed a framework for dynamic composition of communication
services which is well suited to facilitate research and prototyping on real embedded
experimental infrastructures. By using the concept of composeability, the framework
encourages modular component development for various networking functions, there-
fore promoting code re-use.

We argued that the framework we propose consisting of four components is generic
enough to be applied to existing systems as well as future ones. Furthermore, such
a framework is suitable to accommodate both expert and non-expert experimenters
and that is particularly well suited for remote experimentation. We showed that exist-
ing tools supporting the composition of communication services in various segments of
communication networks are covered by this framework and demonstrated that Pro-
toStack, our reference implementation, complies with it and meets all the identified
requirements.

The ProtoStack tool we developed supports dynamic composition of services for sen-
sor networks. We showed by means of feedback collection from first time users that
ProtoStack increases flexibility and saves time for designing, prototyping and testing
of new protocols in realistic scenarios. The tradeoff for the introduced modularity and
support for experimentation in the areas of service oriented networking and cognitive
networking comes in terms of suboptimal performance of the composed protocol stack.
While the studies showed that the tool can speed up design and prototyping of new
protocol stack by at least a factor of 2, the CRime library used by ProtoStack tool has
16 to 17% larger footprint, it takes 2.4 more time to execute openÝ sendÝ recvÝ close
sequence of operatios and consumes 1.6% more power for doing so. Even though with
ProtoStack more resources are consumed by the node, the tradeoff in terms of proto-
typing speed and support for the implementation of the knowledge plane seems to pay
off.

REFERENCES
2013. Cognitive Radio Experimentation World project. (March 2013). http://www.crew-project.eu/
2013. Contiki Hardware. (May 2013). http://www.contiki-os.org/hardware.html
2013. Future Internet Research and Experimentation. (March 2013). http://cordis.europa.eu/fp7/ict/fire/
2013. GENI.net Global Environment for Network Innovations. (March 2013). http://www.geni.net
2013. Resource Description Framework (RDF) Model and Syntax Specification. (March 2013). http://www.

w3.org/TR/PR-rdf-syntax/
2014. NEST Project at Berkley. (2014). http://nest.cs.berkeley.edu/nest-index.html
Nouha Baccour, Anis Koubaa, Luca Mottola, Marco Antonio Zuniga, Habib Youssef, Carlo Alberto Boano,

and Mario Alves. 2012. Radio link quality estimation in wireless sensor networks: a survey. ACM Trans-
actions on Sensor Networks (TOSN) 8, 4 (2012), 34.

ACM Transactions on Sensor Networks, Vol. 0, No. 0, Article 0, Publication date: 0.

0:42 C. Fortuna and M. Mohorcic

Ghazi Bouabene, Christophe Jelger, Christian Tschudin, Stefan Schmid, Ariane Keller, and Martin May.
2010. The autonomic network architecture (ANA). Selected Areas in Communications, IEEE Journal on
28, 1 (2010), 4–14.

Robert Braden, Ted Faber, and Mark Handley. 2003. From protocol stack to protocol heap: role-based archi-
tecture. ACM SIGCOMM Computer Communication Review 33, 1 (2003), 17–22.

Gomez Carles, Boix Antoni, and Paradells Josep. 2010. Impact of LQI-based routing metrics on the perfor-
mance of a one-to-one routing protocol for IEEE 802.15. 4 multihop networks. EURASIP Journal on
Wireless Communications and Networking 2010 (2010).

Edgar F Codd. 1970. A relational model of data for large shared data banks. Commun. ACM 13, 6 (1970),
377–387.

Eli De Poorter, Evy Troubleyn, Ingrid Moerman, and Piet Demeester. 2011. IDRA: A flexible system archi-
tecture for next generation wireless sensor networks. Wireless Networks 17, 6 (2011), 1423–1440.

Leigh Dodds. 2006. Slug: A semantic web crawler. In Proceedings of Jena User Conference, Vol. 2006.
Adam Dunkels, Bjorn Gronvall, and Thiemo Voigt. 2004. Contiki-a lightweight and flexible operating sys-

tem for tiny networked sensors. In Local Computer Networks, 2004. 29th Annual IEEE International
Conference on. IEEE, 455–462.

Adam Dunkels, Fredrik Österlind, and Zhitao He. 2007. An adaptive communication architecture for wire-
less sensor networks. In Proceedings of the 5th international conference on Embedded networked sensor
systems. ACM, 335–349.

Cheng Tien Ee, Rodrigo Fonseca, Sukun Kim, Daekyeong Moon, Arsalan Tavakoli, David Culler, Scott
Shenker, and Ion Stoica. 2006. A modular network layer for sensornets. In USENIX OSDI, Vol. 6.

Carolina Fortuna and Mihael Mohorcic. 2008. Advanced access architecture for efficient service delivery in
heterogeneous wireless networks. In Communications and Networking in China, 2008. ChinaCom 2008.
Third International Conference on. IEEE, 1173–1177.

Carolina Fortuna and Mihael Mohorčič. 2009a. Dynamic composition of services for end-to-end information
transport. Wireless Communications, IEEE 16, 4 (2009), 56–62.

Carolina Fortuna and Mihael Mohorčič. 2009b. Trends in the development of communication networks:
Cognitive networks. Computer Networks 53 (2009), 1354–1376.

Carolina Fortuna and Mihael Mohorcic. 2010. A local knowledge base for the media independent information
system. Future Internet-FIS 2009 (2010), 15–24.

Carolina Fortuna, M Mohorčič, and B Filipič. 2008. Multiobjective optimization of service delivery over
a heterogeneous wireless access system. In Wireless Communication Systems. 2008. ISWCS’08. IEEE
International Symposium on. IEEE, 133–137.

Vanhie-Van Gerwen, Stefan Bouckaert, Ingrid Moerman, Piet Demeester, and others. 2011. Benchmarking
for wireless sensor networks. In SENSORCOMM 2011, The Fifth International Conference on Sensor
Technologies and Applications. 134–139.

Mattijs Ghijsen, Jeroen van der Ham, Paola Grosso, and Cees de Laat. 2012. Towards an Infrastructure
Description Language for Modeling Computing Infrastructures. In Parallel and Distributed Processing
with Applications (ISPA), 2012 IEEE 10th International Symposium on. IEEE, 207–214.

IEEE 802.21 Working Group and others. 2008. IEEE P802.21/D11.0 Draft IEEE standard for local and
metropolitan area networks: Media independent handover services. IEEE p802 (2008), D00.

Norman C. Hutchinson and Larry L. Peterson. 1991. The x −Kernel: an architecture for implementing net-
work protocols. Software Engineering, IEEE Transactions on 17, 1 (1991), 64–76.

E Kim, D Kaspar, C Gomez, and C Bormann. 2011. Problem Statement and Requirements for 6LoWPAN
Routing. (2011). http://tools.ietf.org/html/draft-tavakoli-hydro-01

Eddie Kohler, Robert Morris, Benjie Chen, John Jannotti, and M Frans Kaashoek. 2000. The Click modular
router. ACM Transactions on Computer Systems (TOCS) 18, 3 (2000), 263–297.

Matthias Kovatsch, Simon Duquennoy, and Adam Dunkels. 2011. A low-power CoAP for Contiki. In IETF
Internet Draft. IEEE, 855–860.

Douglas B Lenat and Ramanathan V. Guha. 1991. The evolution of CycL, the Cyc representation language.
ACM SIGART Bulletin 2, 3 (1991), 84–87.

Philip Levis, Samuel Madden, David Gay, Joseph Polastre, Robert Szewczyk, Alec Woo, Eric A Brewer, and
David E Culler. 2004. The Emergence of Networking Abstractions and Techniques in TinyOS.. In NSDI,
Vol. 4. 1–1.

Cynthia Matuszek, John Cabral, Michael Witbrock, and John DeOliveira. 2006. An introduction to the syn-
tax and content of Cyc. In Proceedings of the 2006 AAAI spring symposium on formalizing and com-
piling background knowledge and its applications to knowledge representation and question answering,
Vol. 3864.

ACM Transactions on Sensor Networks, Vol. 0, No. 0, Article 0, Publication date: 0.

A Framework for Dynamic Composition of Communication Services 0:43

Deborah L McGuinness, Frank Van Harmelen, and others. 2004. OWL web ontology language overview.
W3C recommendation 10, 2004-03 (2004), 10.

Sean W O’Malley and Larry L Peterson. 1992. A dynamic network architecture. ACM Transactions on Com-
puter Systems (TOCS) 10, 2 (1992), 110–143.

Joseph Polastre, Jonathan Hui, Philip Levis, Jerry Zhao, David Culler, Scott Shenker, and Ion Stoica. 2005.
A unifying link abstraction for wireless sensor networks. In Proceedings of the 3rd international confer-
ence on Embedded networked sensor systems. ACM, 76–89.

Eric PrudHommeaux, Andy Seaborne, and others. 2008. SPARQL query language for RDF. W3C recommen-
dation 15 (2008).

Chunmei Ren and Daihong Jiang. 2011. A New Ontology of Resource Specification for Wireless Sensor
Networks. In Information Technology, Computer Engineering and Management Sciences (ICM), 2011
International Conference on, Vol. 2. IEEE, 138–140.

Luis Sanchez, Luis Muñoz, Jose Antonio Galache, Pablo Sotres, Juan R Santana, Veronica Gutierrez, Rajiv
Ramdhany, Alex Gluhak, Srdjan Krco, Evangelos Theodoridis, and others. 2013. SmartSantander: IoT
Experimentation over a Smart City Testbed. Computer Networks (2013).

Blake Shepard, Cynthia Matuszek, C Bruce Fraser, William Wechtenhiser, David Crabbe, Z Gungordu,
John Jantos, Todd Hughes, Larry Lefkowitz, Michael Witbrock, and others. 2005. A Knowledge-based
approach to network security: applying Cyc in the domain of network risk assessment. In Proceedings
of the National Conference on Artificial Intelligence, Vol. 20. Menlo Park, CA; Cambridge, MA; London;
AAAI Press; MIT Press; 1999, 1563.

Miha Smolnikar, Carolina Fortuna, Matevž Vučnik, Marko Mihelin, and Mihael Mohorčič. 2011. Wireless
sensor network testbed on public lighting infrastructure. In EcoSense 2011 The Second International
Workshop on Sensing Technologies in Agriculture, Forestry and Environment. 6–7.

Kannan Srinivasan, Prabal Dutta, Arsalan Tavakoli, and Philip Levis. 2010. An empirical study of low-
power wireless. ACM Transactions on Sensor Networks (TOSN) 6, 2 (2010), 16.

Amirhosein Taherkordi, Frédéric Loiret, Romain Rouvoy, and Frank Eliassen. 2011. A generic component-
based approach for programming, composing and tuning sensor software. Comput. J. 54, 8 (2011), 1248–
1266.

Arsalan Tavakoli, David Chu, Joseph M Hellerstein, Phillip Levis, and Scott Shenker. 2007a. A declarative
sensornet architecture. SIGBED Rev 4, 3 (2007), 55–60.

Arsalan Tavakoli and David Culler. 2009. Hydro: A hybrid routing protocol for low-power and lossy net-
works. (2009). http://tools.ietf.org/html/draft-tavakoli-hydro-01

Arsalan Tavakoli, Prabal Dutta, Jaein Jeong, Sukun Kim, Jorge Ortiz, David E Culler, Philip Levis, and
Scott Shenker. 2007b. A modular sensornet architecture: past, present, and future directions. SIGBED
Review 4, 3 (2007), 49–54.

Ryan W Thomas, Daniel H Friend, Luiz A DaSilva, and Allen B MacKenzie. 2006. Cognitive networks: adap-
tation and learning to achieve end-to-end performance objectives. Communications Magazine, IEEE 44,
12 (2006), 51–57.

Milorad Tosic, Ivan Seskar, and Filip Jelenkovic. 2012. TaaSOR–Testbed-as-a-Service Ontology Repository.
In Testbeds and Research Infrastructure. Development of Networks and Communities. Springer, 419–
420.

Alec Woo, Terence Tong, and David Culler. 2003. Taming the underlying challenges of reliable multihop
routing in sensor networks. In Proceedings of the 1st international conference on Embedded networked
sensor systems. ACM, 14–27.

Received May 2013; revised February 2014; accepted ????

ACM Transactions on Sensor Networks, Vol. 0, No. 0, Article 0, Publication date: 0.

Online Appendix to:
A Framework for Dynamic Composition of Communication Services

CAROLINA FORTUNA, Jozef Stefan Institute
MIHAEL MOHORCIC, Jozef Stefan Institute

A. SELECTED RIME COMMUNICATION PRIMITIVES (COMPILED BASED ON THE CONTIKI
2.5 RIME

Name Description

abc

The anonymous best-effort singlehop broadcast primitive (abc) is the most basic communication
primitive in Rime. The abc primitive provides means for upper layers to send a data packet to
all local neighbors that listen to the channel on which the packet is sent. No information about
who sent the packet is included in the transmission, and the module adds no headers to outgoing
packets. All other Rime primitives are based on the abc primitive.

polite

The polite module sends one local area broadcast packet within one time interval. If a packet
with the same header is received from a neighbor within the interval, the packet is not sent. The
polite broadcast module does not add any packet attributes to the header of the outgoing packets
apart from those added by the upper layer.

broadcast

The broadcast module sends a packet to all local neighbors. The module adds the singlehop sender
address as a packet attribute to outgoing packets. All Rime primitives that need the identity of the
sender in the outgoing packets use the broadcast primitive, either directly or indirectly through
any of the other communication primitives that are based on the broadcast primitive.

stbroadcast

The stbroadcast module provides stubborn best-effort local area broadcast. A message sent with
the stbroadcast module is repeated until either the message is canceled or a new message is sent.
The stbroadcast module does not add anything to the header of the outgoing packet; however, the
packets that are sent are identified because this module calls the broadcast module.

ipolite

The ipolite module sends one local area broadcast packet within one time interval. If a packet
with the same header is received from a neighbor within the interval, the packet is not sent.
Ipolite always calls the broadcast module, therefore the packets that are finally sent out are
identified with the sender address. This is difference from the polite module which always calls
the abc module, meaning that packets that are finally sent out have no sender ID.

unicast

The unicast module sends a packet to an identified singlehop neighbor. The unicast primitive uses
the broadcast primitive and adds the singlehop receiver address attribute to the outgoing packets.
For incoming packets, the unicast module inspects the singlehop receiver address attribute and
discards the packet if the address does not match the address of the node.

B. SELECTED CRIME COMMUNICATION PRIMITIVES (COMPILED BASED ON THE CONTIKI
2.5 RIME

Name Description

c abc
The CRime anonymous best-effort singlehop broadcast primitive (c abc) is the most basic com-
munication primitive in Rime. No information about who sent the packet is included in the trans-
mission, and the module adds no headers to outgoing packets.

c polite

The c polite module sends one local area broadcast packet within one time interval. If a packet
with the same header is received from a neighbor within the interval, the packet is not sent. The
polite broadcast module does not add any packet attributes to the header of the outgoing packets
apart from those added by the upper layer.

c broadcast
The c broadcast module sends a packet to all local neighbors. The module adds the singlehop
sender address as a packet attribute to outgoing packets. All Rime primitives that need the iden-
tity of the sender in the outgoing packets use the broadcast primitive.

c unicast

The c unicast module sends a packet to an identified singlehop neighbor. The unicast primitive
uses the broadcast primitive and adds the singlehop receiver address attribute to the outgoing
packets. For incoming packets, the unicast module inspects the singlehop receiver address at-
tribute and discards the packet if the address does not match the address of the node.

C. THE CRIME ONTOLOGY
<?xml version="1.0"?>

© 0 ACM 1550-4859/0/-ART0 $15.00
DOI:http://dx.doi.org/10.1145/0000000.0000000

ACM Transactions on Sensor Networks, Vol. 0, No. 0, Article 0, Publication date: 0.

App–2 C. Fortuna and M. Mohorcic

<!DOCTYPE rdf:RDF [
<!ENTITY owl "http://www.w3.org/2002/07/owl#" >
<!ENTITY xsd "http://www.w3.org/2001/XMLSchema#" >
<!ENTITY rdfs "http://www.w3.org/2000/01/rdf-schema#" >
<!ENTITY cpan "http://downlode.org/rdf/cpan/0.1/cpan.rdf#" >
<!ENTITY rdf "http://www.w3.org/1999/02/22-rdf-syntax-ns#" >
<!ENTITY Process "http://www.daml.org/services/owl-s/1.1B/Process.owl#" >

]>
<rdf:RDF xmlns="http://sensorlab.ijs.si/2012/v0/crime.owl#"

xml:base="http://sensorlab.ijs.si/2012/v0/crime.owl"
xmlns:Process="http://www.daml.org/services/owl-s/1.1B/Process.owl#"
xmlns:xsd="http://www.w3.org/2001/XMLSchema#"
xmlns:rdfs="http://www.w3.org/2000/01/rdf-schema#"
xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#"
xmlns:cpan="http://downlode.org/rdf/cpan/0.1/cpan.rdf#"
xmlns:owl="http://www.w3.org/2002/07/owl#">

<owl:Ontology rdf:about="http://sensorlab.ijs.si/2012/v0/crime.owl"/>
<!--
//
// Annotation properties
//
-->
<!--
//
// Datatypes
//
-->
<!--
//
// Object Properties
//
-->
<!-- http://sensorlab.ijs.si/2012/v0/crime.owl#definedBy -->

<owl:ObjectProperty rdf:about="http://sensorlab.ijs.si/2012/v0/crime.owl#definedBy">
<rdf:type rdf:resource="&owl;FunctionalProperty"/>
<rdfs:comment>Functions are defined by Modules.</rdfs:comment>
<owl:inverseOf rdf:resource="http://sensorlab.ijs.si/2012/v0/crime.owl#defines"/>

</owl:ObjectProperty>
<!-- http://sensorlab.ijs.si/2012/v0/crime.owl#defines -->
<owl:ObjectProperty rdf:about="http://sensorlab.ijs.si/2012/v0/crime.owl#defines">

<rdfs:domain>
<owl:Restriction>

<owl:onProperty rdf:resource="http://sensorlab.ijs.si/2012/v0/crime.owl#defines"/>
<owl:someValuesFrom rdf:resource="&cpan;Module"/>

</owl:Restriction>
</rdfs:domain>
<rdfs:range>

<owl:Restriction>
<owl:onProperty rdf:resource="http://sensorlab.ijs.si/2012/v0/crime.owl#defines"/>
<owl:someValuesFrom rdf:resource="http://sensorlab.ijs.si/2012/v0/crime.owl#Function"/>

</owl:Restriction>
</rdfs:range>

</owl:ObjectProperty>
<!-- http://sensorlab.ijs.si/2012/v0/crime.owl#hasInterface -->
<owl:ObjectProperty rdf:about="http://sensorlab.ijs.si/2012/v0/crime.owl#hasInterface">

<rdfs:domain>
<owl:Restriction>

<owl:onProperty rdf:resource="http://sensorlab.ijs.si/2012/v0/crime.owl#hasInterface"/>
<owl:someValuesFrom rdf:resource="&cpan;Module"/>

</owl:Restriction>
</rdfs:domain>
<rdfs:range>

ACM Transactions on Sensor Networks, Vol. 0, No. 0, Article 0, Publication date: 0.

A Framework for Dynamic Composition of Communication Services App–3

<owl:Restriction>
<owl:onProperty rdf:resource="http://sensorlab.ijs.si/2012/v0/crime.owl#hasInterface"/>
<owl:someValuesFrom rdf:resource="http://sensorlab.ijs.si/2012/v0/crime.owl#Interface"/>

</owl:Restriction>
</rdfs:range>

</owl:ObjectProperty>
<!-- http://sensorlab.ijs.si/2012/v0/crime.owl#hasParameter -->

<owl:ObjectProperty rdf:about="http://sensorlab.ijs.si/2012/v0/crime.owl#hasParameter">
<rdfs:comment>A Module can have several parameters.</rdfs:comment>
<rdfs:domain>

<owl:Restriction>
<owl:onProperty rdf:resource="http://sensorlab.ijs.si/2012/v0/crime.owl#hasParameter"/>
<owl:someValuesFrom rdf:resource="&cpan;Module"/>

</owl:Restriction>
</rdfs:domain>
<rdfs:range>

<owl:Restriction>
<owl:onProperty rdf:resource="http://sensorlab.ijs.si/2012/v0/crime.owl#hasParameter"/>
<owl:someValuesFrom rdf:resource="&Process;Parameter"/>

</owl:Restriction>
</rdfs:range>

</owl:ObjectProperty>
<!-- http://sensorlab.ijs.si/2012/v0/crime.owl#hasScope -->
<owl:ObjectProperty rdf:about="http://sensorlab.ijs.si/2012/v0/crime.owl#hasScope">

<rdfs:comment>From the communication point of view, a module can have several scopes: singlehop, multihop, etc.</rdfs:comment>
<rdfs:range>

<owl:Restriction>
<owl:onProperty rdf:resource="http://sensorlab.ijs.si/2012/v0/crime.owl#hasScope"/>
<owl:someValuesFrom rdf:resource="http://sensorlab.ijs.si/2012/v0/crime.owl#Scope"/>

</owl:Restriction>
</rdfs:range>
<rdfs:domain>

<owl:Restriction>
<owl:onProperty rdf:resource="http://sensorlab.ijs.si/2012/v0/crime.owl#hasScope"/>
<owl:someValuesFrom rdf:resource="&cpan;Module"/>

</owl:Restriction>
</rdfs:domain>

</owl:ObjectProperty>
<!-- http://sensorlab.ijs.si/2012/v0/crime.owl#implementedBy -->
<owl:ObjectProperty rdf:about="http://sensorlab.ijs.si/2012/v0/crime.owl#implementedBy">

<rdfs:comment>Interfaces are implementedBy functions.</rdfs:comment>
<owl:inverseOf rdf:resource="http://sensorlab.ijs.si/2012/v0/crime.owl#implements"/>

</owl:ObjectProperty>
<!-- http://sensorlab.ijs.si/2012/v0/crime.owl#implements -->
<owl:ObjectProperty rdf:about="http://sensorlab.ijs.si/2012/v0/crime.owl#implements">

<rdfs:domain>
<owl:Restriction>

<owl:onProperty rdf:resource="http://sensorlab.ijs.si/2012/v0/crime.owl#implements"/>
<owl:someValuesFrom rdf:resource="http://sensorlab.ijs.si/2012/v0/crime.owl#Function"/>

</owl:Restriction>
</rdfs:domain>
<rdfs:range>

<owl:Restriction>
<owl:onProperty rdf:resource="http://sensorlab.ijs.si/2012/v0/crime.owl#implements"/>
<owl:someValuesFrom rdf:resource="http://sensorlab.ijs.si/2012/v0/crime.owl#Interface"/>

</owl:Restriction>
</rdfs:range>

</owl:ObjectProperty>
<!-- http://sensorlab.ijs.si/2012/v0/crime.owl#isSetBy -->
<owl:ObjectProperty rdf:about="http://sensorlab.ijs.si/2012/v0/crime.owl#isSetBy">

<rdfs:comment>The value of the parameter is set by a Module and is either determined automatically or requested from the end user as initialization parameter.</rdfs:comment>
<rdfs:subPropertyOf rdf:resource="&owl;topObjectProperty"/>
<rdfs:domain>

ACM Transactions on Sensor Networks, Vol. 0, No. 0, Article 0, Publication date: 0.

App–4 C. Fortuna and M. Mohorcic

<owl:Restriction>
<owl:onProperty rdf:resource="http://sensorlab.ijs.si/2012/v0/crime.owl#isSetBy"/>
<owl:someValuesFrom rdf:resource="&Process;Parameter"/>

</owl:Restriction>
</rdfs:domain>
<rdfs:range>

<owl:Restriction>
<owl:onProperty rdf:resource="http://sensorlab.ijs.si/2012/v0/crime.owl#isSetBy"/>
<owl:someValuesFrom rdf:resource="&cpan;Module"/>

</owl:Restriction>
</rdfs:range>

</owl:ObjectProperty>
<!-- http://sensorlab.ijs.si/2012/v0/crime.owl#isUserSetBy -->
<owl:ObjectProperty rdf:about="http://sensorlab.ijs.si/2012/v0/crime.owl#isUserSetBy">

<rdfs:comment>The value of the parameter is set by a Module and is requested from the end user as initialization parameter.</rdfs:comment>
<rdfs:subPropertyOf rdf:resource="http://sensorlab.ijs.si/2012/v0/crime.owl#isSetBy"/>

</owl:ObjectProperty>
<!-- http://sensorlab.ijs.si/2012/v0/crime.owl#isUserSetByOptional -->
<owl:ObjectProperty rdf:about="http://sensorlab.ijs.si/2012/v0/crime.owl#isUserSetByOptional">

<rdfs:subPropertyOf rdf:resource="http://sensorlab.ijs.si/2012/v0/crime.owl#isSetBy"/>
</owl:ObjectProperty>
<!--
//
// Classes
//
-->
<!-- http://downlode.org/rdf/cpan/0.1/cpan.rdf#Module -->
<owl:Class rdf:about="&cpan;Module"/>

<!-- http://sensorlab.ijs.si/2012/v0/crime.owl#Function -->
<owl:Class rdf:about="http://sensorlab.ijs.si/2012/v0/crime.owl#Function"/>
<!-- http://sensorlab.ijs.si/2012/v0/crime.owl#Interface -->
<owl:Class rdf:about="http://sensorlab.ijs.si/2012/v0/crime.owl#Interface"/>
<!-- http://sensorlab.ijs.si/2012/v0/crime.owl#Scope -->

<owl:Class rdf:about="http://sensorlab.ijs.si/2012/v0/crime.owl#Scope"/>
<!-- http://sensorlab.ijs.si/2012/v0/crime.owl#c_close -->
<owl:Class rdf:about="http://sensorlab.ijs.si/2012/v0/crime.owl#c_close">

<rdfs:subClassOf rdf:resource="http://sensorlab.ijs.si/2012/v0/crime.owl#Function"/>
</owl:Class>
<!-- http://sensorlab.ijs.si/2012/v0/crime.owl#c_discover -->
<owl:Class rdf:about="http://sensorlab.ijs.si/2012/v0/crime.owl#c_discover">

<rdfs:subClassOf rdf:resource="http://sensorlab.ijs.si/2012/v0/crime.owl#Function"/>
</owl:Class>
<!-- http://sensorlab.ijs.si/2012/v0/crime.owl#c_dropped -->
<owl:Class rdf:about="http://sensorlab.ijs.si/2012/v0/crime.owl#c_dropped">

<rdfs:subClassOf rdf:resource="http://sensorlab.ijs.si/2012/v0/crime.owl#Function"/>
</owl:Class>
<!-- http://sensorlab.ijs.si/2012/v0/crime.owl#c_forward -->
<owl:Class rdf:about="http://sensorlab.ijs.si/2012/v0/crime.owl#c_forward">

<rdfs:subClassOf rdf:resource="http://sensorlab.ijs.si/2012/v0/crime.owl#Function"/>
</owl:Class>
<!-- http://sensorlab.ijs.si/2012/v0/crime.owl#c_open -->
<owl:Class rdf:about="http://sensorlab.ijs.si/2012/v0/crime.owl#c_open">

<rdfs:subClassOf rdf:resource="http://sensorlab.ijs.si/2012/v0/crime.owl#Function"/>
</owl:Class>
<!-- http://sensorlab.ijs.si/2012/v0/crime.owl#c_recv -->
<owl:Class rdf:about="http://sensorlab.ijs.si/2012/v0/crime.owl#c_recv">

<rdfs:subClassOf rdf:resource="http://sensorlab.ijs.si/2012/v0/crime.owl#Function"/>
</owl:Class>
<!-- http://sensorlab.ijs.si/2012/v0/crime.owl#c_send -->
<owl:Class rdf:about="http://sensorlab.ijs.si/2012/v0/crime.owl#c_send">

<rdfs:subClassOf rdf:resource="http://sensorlab.ijs.si/2012/v0/crime.owl#Function"/>
</owl:Class>

ACM Transactions on Sensor Networks, Vol. 0, No. 0, Article 0, Publication date: 0.

A Framework for Dynamic Composition of Communication Services App–5

<!-- http://sensorlab.ijs.si/2012/v0/crime.owl#c_sent -->
<owl:Class rdf:about="http://sensorlab.ijs.si/2012/v0/crime.owl#c_sent">

<rdfs:subClassOf rdf:resource="http://sensorlab.ijs.si/2012/v0/crime.owl#Function"/>
</owl:Class>
<!-- http://sensorlab.ijs.si/2012/v0/crime.owl#c_timed_out -->
<owl:Class rdf:about="http://sensorlab.ijs.si/2012/v0/crime.owl#c_timed_out">

<rdfs:subClassOf rdf:resource="http://sensorlab.ijs.si/2012/v0/crime.owl#Function"/>
</owl:Class>
<!-- http://www.daml.org/services/owl-s/1.1B/Process.owl#Parameter -->
<owl:Class rdf:about="&Process;Parameter"/>

</rdf:RDF>
<!-- Generated by the OWL API (version 3.2.3.1824) http://owlapi.sourceforge.net -->

ACM Transactions on Sensor Networks, Vol. 0, No. 0, Article 0, Publication date: 0.

