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Abstract—Short-term forecasting of the energy production is 
one of the key issues in smart homes that tend to achieve 
efficient balance among the energy production, storage and 
consumption. In this paper, we first perform an analysis of the 
features to be used by the most promising short-term forecast 
model: artificial neural networks. We determine the best 
performing offline model and then propose an online model that 
is very close to the offline model in terms of prediction accuracy. 
The evaluation is performed on a real world data and the 
resulting system is part of a proof-of-concept application for 
microgrid management.  

Index Terms— Forecasting, Neural networks, Photovoltaic 
systems, Microgrids 

I. INTRODUCTION 
One of the key challenges of smart grids is to integrate the 

increasing number of distributed energy sources and 
microgrids into a dynamic and efficient macrogrid system [1], 
where the produced energy is at any time effectively spent and 
the peak loads are minimized. This problem is often dubbed as 
demand-response and concerns the electricity suppliers as well 
as the prosumers (i.e. energy producers and consumers). The 
trend is to promote self-sustaining prosumer entities, where 
most of the produced energy is used at the same location, for 
instance within smart buildings. Such subsystems should 
incorporate short-term forecasting of the energy production 
and consumption as well as the state of the electricity grid 
(tariff) in order to efficiently balance among production, 
storage and consumption.  

Forecasting the produced energy with high accuracy 
represents one of the key issues in microgrid control, where 
the photovoltaic (PV) energy sources are dominating the 
market [1]. In smart grid systems, the forecasts of both the 
consumption and the production will enable dynamic pricing 
models as well as proactive control of the macrogrid network. 
The approaches for forecasting the PV energy production vary 
in the literature depending on the considered forecast horizon 
and the forecasted parameters.  

With respect to the forecast horizon, statistical methods 
outperform methods that use physical models for short-term 
forecasting of up to 6 hours, while physical models are more 
accurate for longer term forecasting of up to 24 to 36 hours 
[2], [3]. The short-term forecasts typically use measured 
weather and PV system data, and satellite and sky imagery 
observations of clouds, while the long term forecasts use 
numerical weather prediction (NWP) models [4]-[8]. The best 
approaches make use of both data and NWP models.  

With respect to the forecasted parameter, most of the 
related work focuses on forecasting the global solar irradiance 
from which the value of the solar power is then computed [9]-
[13]. Further, in order to predict the actual generated electrical 
energy, the transformation function of the used conversion 
technology is applied. These approaches have the 
disadvantage of not taking into account equipment 
degradation and modifications in the local environment [8]. 
For instance, when the properties of the transformation 
modules degrade or the micro-environment changes, the 
transformation function may introduce significant errors in the 
final forecasted value. Adaptive techniques that also use 
locally measured data are able to provide more accurate 
predictions by implicitly taking into account the effects of 
possible dust, snow, dry leaves that gather on the panels, etc.  

Most of the related work use offline forecasting techniques 
[9]-[14] which tend to perform slightly better than online 
techniques [15], but are slower since they process large 
batches of data. However, the technology enabling intelligent 
and proactive prosumer scenarios is very likely to be based on 
online rather than offline learning. In this paper, we propose a 
system for online short-term forecasting of the electric current 
generated by a set of PV panels. After collecting and pre-
processing locally measured PV and environmental data, we 
perform a regression analysis between the descriptive (input) 
and predicted (output) variables to determine the features 
relevant for the prediction task. We then evaluate the 
performance of Artificial Neural Networks (ANNs), including 
an online version, with a number of engineered feature sets, 
and discuss the differences. We have selected ANNs as the 
most promising categories of statistical methods that perform 
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well for short-term forecasting [8]. Our contributions are: (i) 
we predict an actual measured value coming from the PV 
power plant that takes into account degradations and changes 
in the micro-environment, (ii) we provide a comprehensive 
evaluation with respect to the input feature set, (iii) we also 
implement and evaluate an online ANN model in contrast to 
most work that use models trained offline [9]-[14] and (iv) we 
use real-life data and an open source prediction system for the 
implementation of the proof-of-concept application. 

The paper is structured as follows. Section II discusses and 
analyzes the collected data. Section III presents and evaluates 
the offline forecasting methods, while Section IV focuses on 
the online forecasting. Finally, Section V concludes the paper. 

II. DATA COLLECTION AND ANALYSIS 
In this section, we describe the data collection procedure 

and perform an analysis of the collected data. Our dataset 
consists of two parts: locally collected data by sensors 
mounted on the PV power plant and external data collected 
from independent sources.  

A. Locally Collected Data 
The locally collected data is provided by five sensor nodes 

installed on monocrystalline silicon solar panels forming a PV 
power plant situated on a business building in Ljubljana, 
Slovenia [16]. The setup consists of four clusters of panels1: 
two clusters having their panels oriented towards the south, 
one cluster having its panels oriented towards the east and the 
last cluster having its panels oriented towards the west. 
Between each cluster of panels and the corresponding power 
inverter, a VESNA sensor node2 is installed and measures (i) 
the produced current [A] of one solar panel within cluster and 
(ii) the temperature of the PN junctions (modeled with the top 
and bottom solar panel temperature measurement) [°C]. The 
four nodes are labeled 51-54 as listed in TABLE I and 
perform measurements every 2 minutes. The measurements 
are then sent to a server using the available GPRS connection. 

The fifth sensor node hosts a weather station measuring 
the local weather conditions; namely, it samples every 2 
minutes the (i) air temperature [°C], (ii) relative humidity [%], 
(iii) wind speed [m/s] and direction [deg], (iv) precipitation 
[mm], and (v) the intensity of solar radiation in the visible and 
ultraviolet parts of the spectrum [W/m2]. 

The measured sensor data is collected in a database located 
on a remote server. Each measurement is time-stamped and 
accompanied with metadata including the ID of the node, and 
its longitude and latitude. This paper characterizes the time 
period between May 1st, 2013 at 07:29 to November 14th, 2013 
at 23:59. The properties of the data from the sensor network in 
terms of size and missing values are summarized in TABLE I. 
For the training and evaluation of the offline and online 
models, average hourly values were calculated for each 
variable from the dataset resulting in a summarized dataset of 
4649 instances. Missing data were compensated using linear 
interpolation. 
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TABLE I.  LOCALLY COLLECTED DATASETS FROM THE PV SYSTEM 

Node 
No. 

Dataset 
size [MB] 

Total 
instances 

Damaged 
instances [%] Remark 

1 65.2 174762 0.72 Weather station 

51 30.3 107248 33.91 Top temp. 
missing 

52 37.5 131183 3.45 / 

53 43.5 156341 12.14 Top & bottom 
temp. missing 

54 49.3 172093 1.03 / 

 

From TABLE I it can be seen that the data collected from 
the weather station (Node 1) is the most consistent and has the 
lowest amounts of missing or damaged data (0.72%). It also 
contains the largest amount of measurements. On the other 
hand, Node 51 has the most damaged data because there was a 
malfunction on the sensor measuring the top temperature of 
the PN junction for 30% of the dataset. On Node 53, there was 
also an outage of both top and bottom PN temperature sensors 
for 12% of the dataset. The dataset from Node 54 was selected 
for further analysis because of its minimum missing and 
damaged data compared to other nodes. 

B. Regression Analysis of the Locally Collected Data 
The aim of this analysis is to identify the influential system 

variables that have a statistically significant correlation with 
the forecasted PV current. For the analysis, average hourly 
values for each measured parameter were computed and the 
correlation was investigated in terms of R2 statistics using 
Matlab©. The analysis results for the cases with large windows 
of missing data (such as 24 hours or more) are excluded. Also, 
note that the R2 statistic can be negative if the model is not 
appropriate for the data.  

The results for the regression analysis between the PV 
current and each local descriptive (input) variable are given in 
TABLE II. As expected and confirmed in previous studies 
[14], the results indicate that the most correlated parameter 
with the PV current is the solar radiation. After the solar 
radiation, the next most correlated variable to the PV current is 
the air temperature.  

TABLE II.  REGRESSION ANALYSIS (R2) OF THE LOCALLY MEASURED 
SYSTEM PARAMETERS 

Solar 
radiation 

Air 
temperature 

Relative 
humidity Precipitation 

0.8870 0.2436 -0.2427 -0.0771 

Wind speed Wind 
direction 

Bottom module 
temperature 

Top module 
temperature 

0.0934 -0.2045 0.1270 0.2091 

 

C. External Data 
By external data, we refer to other data sources that may 

help with the prediction of power generation such as sun 
position, weather forecasts, etc. 

Previous studies have confirmed that using additional data 
sources such as sun position at the forecast horizon and 



weather forecast can be used to improve the predictions. Sun 
elevation and azimuth can be computed according to time of 
the day, and the latitude and longitude of the sensor. 
Additionally, weather forecast data from online providers who 
use NWP models can also be used. Such forecasts can be 
obtained from web services such as Weather.com, Forecast.io 
and OpenWeatherMap. The first two offer hourly forecasts, 
while the latter only offers 3-hour forecasts. The forecasted 
phenomena include temperature, cloud coverage, UV-index, 
humidity, etc. The accuracy of the forecasts differs from 
provider to provider and depends on the geographical location 
for which the forecast is provided. 

In this paper, we used forecasted weather parameters (i.e., 
solar radiation, air temperature and cloud cover) retrieved 
from 54-hour forecast for each day from the ALADIN NWP 
model. The data was provided by the Slovenian 
Environmental Agency3. Using forecast data from non-local 
providers, such as Forecast.io, increased the mean average 
error in current prediction by 0.2 A. Furthermore, we 
calculated the sun elevation and azimuth for the positions of 
the sensors at each hour of the analyzed period.  

III. OFFLINE FORECAST MODELS 

A. Experimental Design 
ANNs are computational models presented as systems of 

interconnected "neurons" which can compute output values for 
the predicted (target) variable from input values for the 
descriptive variables [17]. In this study, the ANN was trained 
with the Matlab© software and its Neural Network toolbox, 
more precisely, the Neural Network Fitting Tool used to solve 
an input-output fitting problem with a two-layer feed-forward 
neural network. The Neural Network Fitting Tool incorporates 
the steps to select input and output data, create and train the 
network, and evaluate its performance using mean square 
error (MSE) and regression analysis. MSE is the average 
squared difference between outputs and targets. Regression R 
values measure the correlation between outputs and targets. 
An R value of 1 means a close relationship, 0 a random 
relationship. 

A two-layer feed-forward network with sigmoid hidden 
neurons (number of hidden neurons = 10) and linear output 
neurons was used. The network was trained with the 
Levenberg-Marquardt backpropagation algorithm. The dataset 
was randomly divided for training (70% of the samples), 
validation (15% of the samples) and testing (15% of the 
samples). To speed up the learning process, some 
preprocessing of the input data was done automatically: 
normalization (transforms input data so that all values fall into 
the interval [−1, 1]) and duplicates cleaning (removing the 
rows of the input vector that correspond to input elements that 
always have the same value). To ensure that an ANN of good 
accuracy has been found, the network was trained 10 times 
and the average of the MSE and R are reported as results.  

Four ANN models for forecast horizon of 6-hour ahead 
were investigated (TABLE III). The first model (Model 1) is 
based only on relevant local PV and environment data as input 
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- the hourly average values at time instances t, t-1h, t-2h, t-3h, 
t-4h and t-5h of the (i) solar radiation (SR), (ii) air temperature 
(AT) and (iii) PV current (PVC), while the target is the 
corresponding hourly average value of the PV current at time 
instant (t + 6h). Next, in order to investigate to which extent 
simple data about the sun position at the forecast horizon can 
improve the prediction, we investigated the same forecasting 
model, but with two additional external inputs: the elevation 
(ELV) and the azimuth (AZM) at the forecast horizon (Model 
2). Afterwards, we investigated two ANN models (Model 3 
and Model 4) that, besides the inputs of Model 2, include also 
forecasted weather parameters: solar radiation, air temperature 
and cloud cover (CC). Model 3 includes values for the input 
parameters at time instances t: t-5h, while Model 4 includes 
only values at time instant t. The comparison between Model 
3 and Model 4 will show how the exclusion of the measured 
history data as input influences the prediction performance.  

TABLE III.  INPUT PARAMETERS FOR THE INVESTIGATED OFFLINE ANN 
PV FORECASTING MODELS 

Model 
No. Inputs 

1 SR(t:t-5h), AT(t:t-5h), PVC(t:t-5h) 

2 SR(t:t-5h), AT(t:t-5h), PVC(t:t-5h), ELV(t+6h), AZM(t+6h) 

3 SR(t:t-5h), AT(t:t-5h), PVC(t:t-5h), ELV(t+6h), AZM(t+6h), 
SR(t+6h), AT(t+6h), CC(t+6h) 

4 SR(t), AT(t), PVC(t), ELV(t+6h), AZM(t+6h), SR(t+6h), 
AT(t+6h), CC(t+6h) 

PVC – PV Current, SR – Solar Radiation, AT – Air Temperature,  
CC – Cloud Cover, ELV – Elevation, AZM – Azimuth.  

The SR, AT and CC at the forecast horizon are outputs from a NWP model. 

 

B. Results and Discussion 
The performance results for the ANN models from 

TABLE III are given in TABLE IV. The reported results are: 
(i) MSE and (ii) R for the training, validation and test dataset; 
and (iii) MSE, (iv) mean absolute error (MAE), and (v) mean 
absolute normalized percentage error (MANPE) calculated on 
the entire dataset (excluding and including nights). MANPE is 
calculated as MAE normalized by the maximal target PV 
current. 

The R values for Model 1 are smaller than 0.9, which does 
not indicate good correlation. For Model 2, the correlation is 
improved. The MANPE on the entire dataset for Model 2 
compared to Model 1 decreased by 6.04% calculated 
excluding nights, and by 6.79% calculated including nights. 
We can conclude that for longer forecast horizon, the 
inclusion of sun angle information decreases the overall error 
significantly. 

The comparison of the performance results for Model 2 
and Model 3 shows that adding weather forecast information 
at the time horizon improves the prediction a little, but not 
significantly. This is due to the accuracy of the weather 
forecast. Namely, for the considered period (May 2013 – 
November 2013), the MANPE between the measured and the 
forecasted solar radiation is 10.73%, and between the 
measured and the forecasted air temperature is 6.31%. 
However, Model 3 performs the best with MANPE of 8.42% 



calculated on the entire data set excluding nights, or 7.67% 
including nights. Moreover, an interesting result is that 
removing the measured history data as input (Model 3 vs. 
Model 4) improves the overall performance on the entire 
dataset when nights are included. 

TABLE IV.  PERFORMANCE RESULTS FOR THE OFLINE ANN MODELS 
DEFINED IN TABLE III 

  Model 1 Model 2 Model 3 Model 4 

Train. 
MSE 6.0361 2.5847 2.0380 1.7675 

R 0.8061 0.9223 0.9395 0.9478 

Valid. 
MSE 6.6737 3.2331 2.4507 1.7444 

R 0.7872 0.9017 0.9267 0.9475 

Test 
MSE 6.8040 3.1803 2.6416 1.7719 

R 0.7822 0.9031 0.9194 0.9473 

Entire 
dataset 
(exc. 
nights) 

MSE 6.1650 2.9065 2.3862 2.8383 

MAE 
[A] 1.7076 1.0348 0.9382 1.0984 

MANPE 
[%] 15.3284 9.2892 8.4217 9.8596 

Entire 
dataset 
(inc. 
nights) 

MSE 6.1192 2.5801 2.0576 1.7380 

MAE 
[A] 1.7009 0.9442 0.8546 0.7291 

MANPE 
[%] 15.2683 8.4759 7.6712 6.5446 

MSE - mean squared error, R - regression correlation, MAE - mean absolute error,  
MANPE - mean absolute normalized percentage error. 

 

IV. ONLINE FORECAST SYSTEM 

A. Experimental Design 
For the online ANN, we assumed a classic 

backpropagation ANN with gradient descent. The used online 
ANN has tanh activation function and an output layer using 
linear activation function. The settings of the ANN are 
learning rate of 0.05 and momentum of 0.6. 

The main difference between the offline and online 
experimental design is in the choice of the training and 
evaluation datasets. While for the offline cases this involves a 
random selection process as described in Section III B, in the 
case of online learning, the training and evaluation data are 
sequential. Each incoming data point is used for training and 
the evaluation is performed for each predicted value. Same as 
in the offline case, the inputs are normalized to [-1, 1] which is 
optimal for learning the ANN with a tanh activation function. 
In contrast to the offline learning, the outputs are not 
normalized since this improved the learning speed. The results 
are calculated as MAE of predicted current vs. the measured 
current throughout the entire dataset, excluding the first 6 
weeks when the model is still learning. According to the 
results in Section III, the two best performing online models 
selected for further experimentation are summarized in 
TABLE V.  

TABLE V.  INPUT PARAMETERS FOR THE INVESTIGATED ONLINE ANN 
PV FORECASTING MODELS 

Model  Inputs 

O1 
SR(t), AT(t), PVC(t), ELV(t+6h), AZM(t+6h), SR(t+6h), 
AT(t+6h), CC(t+6h) 

O2 ELV(t+6h), AZM(t+6h), SR(t+6h), AT(t+6h), CC(t+6h) 

 PVC – PV Current, SR – Solar Radiation, AT – Air Temperature,  
CC – Cloud Cover, ELV –Elevation, AZM – Azimuth.  

The SR, AT and CC at the forecast horizon are outputs from a NWP model. 

 

B. Experimental Results 
The first result concerns the topology of the ANN which is 

smaller than the topology used by the offline methods. In our 
case, the best performing topology had one hidden layer with 
3 neurons (vs. 10 in offline). We also evaluated larger 
topologies with more neurons and more layers which all 
performed worse (see TABLE VI). This result is also 
consistent with the findings in other application areas [15].  

TABLE VI.  MAE [A] FOR DIFFERENT ANN TOPOLOGIES OF MODEL O1 

# neurons  3 6 9 12 

1-layer 1.00 1.08 1.12 1.14 

2-layer 1.32 1.28 1.34 1.31 

 

The second result concerns the performance of the online 
models described in TABLE V. The MAE calculated 
excluding nights and averaged over 10 experimental runs for 
the online learning models O1 and O2 is 1.00 A and 1.09 A 
respectively. This is slightly higher MAE value than the one 
for the best offline model M3 that has MAE of 0.9382 A. 
However, it is known that offline models usually outperform 
online models [15]. In the application area investigated in this 
paper, the difference in performance in favor of the offline 
version is only 6%. Online learning is appropriate when the 
training data is produced online and the network needs to 
adapt during the process while the system runs on constrained 
devices with limited computing resources. Therefore, a 
modest sacrifice on the performance side for the benefit of 
computational time and resources is acceptable, since we need 
a system that will perform in real-time. 

C. Implementation 
The implementation of the system4 used for online 

forecasting of the PV current production is based on the 
QMiner5 tool that features online ANN. The functional blocks 
comprising the system are depicted in Fig. 1. The locally 
measured data points are being streamed to the time stamp 
alignment and resampling block that sends them to a time 
window summarization block. The summarized data points are 
then sent to the training and prediction block from where they 
can be visualized using a web-based interface shown in Fig. 2.  

The proof-of-concept is part of a complete microgrid 
management dashboard depicted in Fig. 2. The dashboard 
offers a good and quick overview of the energy status of the 

                                                             
4 https://github.com/josthkko/energy-predict 
5 http://qminer.ijs.si/ 



microgrid, as well as a simple sensor management system. 
The top right corner shows instant notifications for the user. 
The chart in the middle shows the measured and predicted PV 
current. The numbers above the chart are the forecasted PV 
current and power consumption 6 hours ahead, the cumulative 
monetary profit for a given month and the momentary 
accuracy of the prediction system. Below the chart are custom 
widgets about the weather forecast, locations of the sensor 
systems, and a ring chart showing the percentage of total 
electricity produced by each energy source in the microgrid. 
 

 
Figure 1.  Online PV current production forecast - system overview 

 

 
Figure 2.   Proof-of-concept microgrid monitoring and control application 

(http://videk.ijs.si:8080/www/) 

V. CONCLUSION 
The paper presents a short-term online forecasting system 

enabling proactive prosumer scenarios for microgrid 
developments. The system performs up to 6-hour horizon 
predictions for the current generated in a real PV power plant 
located in Ljubljana, Slovenia. The input variables of the 
models were locally collected sensor network data for past 
values of hourly PV current production, as well as measured 
weather variables (solar radiation and air temperature). 
Additionally, external data for calculated sun angles and 
forecasted weather parameters (solar radiation, air temperature 
and cloud cover) at the forecast horizon were included as 
input. We investigated offline and online ANN models and 
showed that the performance of the best offline model is just 
6% better from the best online one. This result is beneficial for 
intelligent and proactive prosumer scenarios that are expected 
to rely on online learning. Moreover, we also present a proof-

of-concept application for microgrid management that 
integrates online forecasting of PV energy production. 
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