

Performing cognitive radio experiments on the
LOG-a-TEC sensor network testbed

Tomaž Šolc
tomaz.solc@ijs.si

CREW Training Days
20 February 2013

The research leading to these results has received funding from the European Union's Seventh Framework Programme
(FP7/2007-2013) under grant agreement n°258301 (CREW project).

Overview

● Overview of the VESNA platform
– hardware

– software stack

● Overview of Log-a-tec testbed
– how remote access works

● Building a basic experiment with Python
– required software

– step-by-step demonstration

● Conclusion and further references

VESNA

● “VErsatile platform for Sensor Network Applications”

VESNA

SNC
Sensor Node Core

SNR
Sensor Node Radio

SNE
Sensor Node Expansion

● “VErsatile platform for Sensor Network Applications”

Sensor Node Core

● STM ARMv7 Cortex-M3
– up to 72 MHz clock, 1 MB Flash, 96 kB RAM

● 3 x 1 MS/s ADC, w/ instrumental amplifier
● Non-volatile storage

– 128 kB fast MRAM

– SD or microSD

● Multi-purpose power supply
– rechargeable, non-rechargeable battery, solar cell,

external power

● USB 2.0, RS-232, I2C, SPI, UART, ...

Sensor Node Radio

● Connect nodes into a wireless mesh network
– 868 MHz European SRD band

– 2.4 GHz ISM band

● IEEE 802.15.4
– Atmel proprietary

BitCloud / ZigBit /
SerialNet

– 6lowPAN

● Sensor node control
and management

Sensor Node Expansion

● SNE connector allows
for application specific
expansions
– Data acquisition,

– sensor interfaces,

– wired/wireless
communications,

– extra power supply,

– etc.

SNE-ISMTV

● Designed for spectrum sensing and cognitive
radio applications

● Collection of radio-frequency hardware
– UHF/VHF wide-band energy detection receiver

– reconfigurable narrow-band sub-1 GHz transceiver

– reconfigurable narrow-band 2.4 GHz transceiver

– additional IEEE 802.15.4 radio (868 MHz)

● Independent of the testbed management
network

SNE-ISMTV-UHF

SNE-ISMTV-UHF

● Based on NXP TDA18219 silicon tuner

● Frequency range 470 - 862 MHz
● Bandwidth 1.7 MHz, 8 MHz
● Power detector uncertainty 1.8 dBm
● Detector read-out time 50 ms / 1 μs
● Average noise level -169 dBm (@ 1Hz)
● Dynamic range 60 dBm

Texas Instruments CCxxxx

SNE-ISMTV-TI868, TI2400

● Integrated tuner, modem,
packet handling hardware

● Reception and transmission
– FSK, MSK, ASK modulations

– packet-based or continuous

● Energy detection measurements
● Test signal generation, interferer simulation
● Experiments with packet-based protocols

SNE-ISMTV-TI868

● Based on TI CC1101 sub-1 GHz transceiver

● Frequency range 780 - 871 MHz
– 868 MHz European SRD band

– upper channels of the UHF band

● Bandwidth 50, 100, 200 kHz
● Power detector resolution 0.5 dBm
● Average noise level -150 dBm (@ 1Hz)
● Maximum TX power 12 dBm

SNE-ISMTV-TI24

● Based on TI CC2500 2.4 GHz transceiver

● Frequency range 2.40 – 2.48 GHz
– 2.4 GHz ISM band

● Bandwidth 200, 400 kHz
● Power detector resolution 0.5 dBm
● Average noise level -159 dBm (@ 1Hz)
● Maximum TX power 0 dBm

SNE-ISMTV

● Designed for spectrum sensing and cognitive
radio applications

● Collection of radio-frequency hardware
– UHF/VHF wide-band energy detection receiver

– reconfigurable narrow-band sub-1 GHz transceiver

– reconfigurable narrow-band 2.4 GHz transceiver

– additional IEEE 802.15.4 radio (868 MHz)

● Independent of the testbed management
network

VESNA software stack

libopencm3
STM32
FWLib

Contiki OS

VESNA drivers

Application

VESNA software stack

libopencm3
STM32
FWLib

Contiki OS

VESNA drivers

Application
● Hardware register

definitions
● Abstraction of

MCU peripherals
● libopencm3

– LGPL

● STM32 FWLib
– open source,

proprietary license

VESNA software stack

Contiki OS

VESNA drivers

Application
● High level abstraction
● Standard C library

support
– #include <stdio.h>

● Device drivers
– storage, sensors,

radio, SNE support, ...

● Networking
● Convenience functions

libopencm3
STM32
FWLib

VESNA software stack

Contiki OS

VESNA drivers

Application
● Embedded

operating system
● Cooperative

multi-tasking
● Networking

– IPv4, IPv6,
6lowPAN, RPL, CoAP

● Permissive
BSD-style license

libopencm3
STM32
FWLib

VESNA software stack

Contiki OS

VESNA drivers

Application
● Application can

– Run on Contiki OS

– Run without OS using
VESNA drivers

– Run without OS using
libopencm3

● Depends on
licensing, complexity

libopencm3
STM32
FWLib

Overview

● Overview of the VESNA platform
– hardware

– software stack

● Overview of Log-a-tec testbed
– how remote access works

● Building a basic experiment with Python
– required software

– step-by-step demonstration

● Conclusion and further references

Log-a-tec testbed

Log-a-tec testbed

● 51 VESNA wireless sensor nodes
– mostly mounted on street lights, some on rooftops

– 32 x SNE-ISMTV-TI24

– 11 x SNE-ISMTV-TI868

– 5 x SNE-ISMTV-UHF w/ low-gain antenna

– 3 x SNE-ISMTV-UHF w/ high-gain antenna

● Two clusters in municipality of Logatec
– industrial zone (23 nodes)

– city center (28 nodes)

100 m

200 m

1000 m

local DVB-T transmitter
P = 200 W, fc = 562 MHz, BW = 8 MHz

Log-a-tec VESNA application

Contiki OS

VESNA drivers

Application
● REST interface for

remote experiments
● Native code for

local experiments
● Test bed

Management
– OTA reprogramming

– monitoringlibopencm3
STM32
FWLib

Controlling the SNE-ISMTV

register-level access

spectrum sensing/
signal generation

C API

spectrum sensing/
signal generation
REST interface

CREW CDF

lo
ca

l
re

m
ot

e

h
ig

he
r

co
m

pl
e

xi
ty

 /
lo

w
e

r
re

sp
o

ns
e

 ti
m

e

Controlling the SNE-ISMTV

● Spectrum sensing setup
● Meta-data in XML

– hardware setup,
– frequency band,
– date, author, ...

● Data in CSV
or MatLab format
– spectrum sensing results
– (time, frequency, power)register-level access

spectrum sensing/
signal generation

C API

spectrum sensing/
signal generation
REST interface

CREW CDF

lo
ca

l
re

m
ot

e

h
ig

he
r

co
m

pl
e

xi
ty

 /
lo

w
e

r
re

sp
o

ns
e

 ti
m

e

Controlling the SNE-ISMTV

● High-level abstraction
of hardware

● Spectrum sensing
– sense band B at

time T using device D
and method M

● Signal generation
– transmit at frequency

F and power P
register-level access

spectrum sensing/
signal generation

C API

spectrum sensing/
signal generation
REST interface

CREW CDF

lo
ca

l
re

m
ot

e

h
ig

h
e

r
co

m
p

le
xi

ty
 /

lo
w

er
 r

es
p

on
se

 ti
m

e

Controlling the SNE-ISMTV

● Direct access to the
API from native code

● Removes network
round-trips
– lower latency

– data processing on
the sensor node

– no interference on
868 MHz band

register-level access

spectrum sensing/
signal generation

C API

spectrum sensing/
signal generation
REST interface

CREW CDF

lo
ca

l
re

m
ot

e

h
ig

he
r

co
m

pl
e

xi
ty

 /
lo

w
e

r
re

sp
o

ns
e

 ti
m

e

Controlling the SNE-ISMTV

● Directly programming
radio hardware
– CC1101, CC2500,

TDA18219

● Exploit full
capabilities of
available hardware

● Time consuming
testing required

register-level access

spectrum sensing/
signal generation

C API

spectrum sensing/
signal generation
REST interface

CREW CDF

lo
ca

l
re

m
ot

e

h
ig

he
r

co
m

pl
e

xi
ty

 /
lo

w
e

r
re

sp
o

ns
e

 ti
m

e

REST interface

● Each node has a 16-bit network address
● Nodes act as a servers on the network

– expose various resources

– resources addressed by name
e.g. “sensing/deviceStatus”

– GET and/or POST method

● Experimenter's computer acts as a client
– issues requests to nodes and receives responses

– only one request at a time

REST interface

● GET method
– retrieve data from the node

(e.g. measurement results, status messages, ...)

– doesn't change state

GET sensing/slotInformation?id=1

method argumentsresource name

REST interface

● POST method
– send data to the node

(e.g. configuration parameters, trigger events, ...)

– changes state

POST generator/program?

in 1 sec for 10 sec with dev 0
conf 0 channel 0 power 0

method argumentsresource name

data

Network overview

VESNA
node

VESNA
coordinator user

HTTP
server

868 MHz
wireless internet internet

you are here

Log-a-tec web portal

VESNA
node

VESNA
coordinator user

HTTP
server

868 MHz
wireless internet internet

you are here

● Web portal
– map with locations of VESNA nodes

– manually issue GET and POST requests

– simulations with GRASS-RaPlaT

● HTTP API end-point
– programmatic access to VESNA REST interface

Accessing the coordinator

VESNA
node

VESNA
coordinator user

HTTP
server

868 MHz
wireless internet internet

● HTTP server forwards GET & POST requests
to coordinator

● Simple HTTP-like (ALH) protocol
over SSL tunnel

● One coordinator per cluster
– coordinator identified by cluster ID

Python libraries

VESNA
node

VESNA
coordinator user

HTTP
server

868 MHz
wireless internet internet

● https://crn.log-a-tec.eu/communicator?
cluster=10001&method=get&resource=hello

● We provide a Python module to communicate
with VESNA nodes

Overview

● Overview of the VESNA platform
– hardware

– software stack

● Overview of Log-a-tec testbed
– how remote access works

● Building a basic experiment with Python
– required software

– step-by-step demonstration

● Conclusion and further references

Installing Python libraries

● set $PYTHONPATH
– add to ~/.bashrc:
export PYTHONPATH=”$HOME/local/lib/python”

● install vesna-alh-tools
– https://github.com/sensorlab/vesna-alh-tools

– $ python setup.py install --home=~/local

● install vesna-spectrum-sensor
– https://github.com/sensorlab/vesna-spectrum-sensor

– $ cd python

– $ python setup.py install --home=~/local

Installing Python libraries

● set authentication details
– create ~/.alhrc with:

Host crn.log-a-tec.eu
User <username>
Password <password>

Demo

VESNA
node

VESNA
coordinator user

HTTP
server

868 MHz
wireless internet internet

01-hello.py

Coordinator proxy

VESNA
node

VESNA
coordinator user

HTTP
server

868 MHz
wireless internet internet

● Coordinator can proxy GET & POST requests
to nodes over the management network

● GET nodes?19/sensor/mcuTemp
issues
GET sensor/mcuTemp
to node 19

VESNA networking

VESNA
node

VESNA
coordinator user

HTTP
server

868 MHz
wireless internet internet

● management mesh network
● 868 MHz (European SRD band)
● typical bulk transfers ~ 300 bytes/s
● typical round-trip times ~ 600 ms
● HTTP-like protocol over IEEE 802.15.4 mesh

Demo

VESNA
node

VESNA
coordinator user

HTTP
server

868 MHz
wireless internet internet

02-proxy.py

Demo

VESNA
node

VESNA
coordinator user

HTTP
server

868 MHz
wireless internet internet

manage.py interactive session

Spectrum sensing interface

● Hardware abstraction
– each node has one or more physical devices

– each device has one or more configurations

● Device configuration determines
– usable frequency range

– channel number→central frequency relation

– settle time required after channel change

– channel bandwidth

– averaging / post processing parameters (if any)

Demo

03-spectrum-sensing-devices.py

Spectrum sensing interface

● class SpectrumSensor
– wrapper around ALHProxy for convenience methods

● class ConfigList
– describes possible hardware device configurations

● class SweepConfig
– describes frequency sweep

– hardware configuration, start, stop, step frequency

● class Sweep
– results of spectrum sensing sweep

(timestamp, frequency, power)

Demo

04-single-sweeps.py

Signal generation interface

● Hardware abstraction
– each node has one or more physical devices

– each device has one or more configurations

● Device configuration determines
– usable frequency, power range

– channel number→central frequency relation

– transmitted waveform

Signal generation interface

● class SignalGenerator
– wrapper around ALHProxy for convenience methods

● class ConfigList
– describes possible hardware device configurations

● class TXConfig
– describes signal transmission

– hardware configuration, frequency, power

● class SignalGeneratorProgram
– Transmission configuration, start time, duration

Demo

05-signal-generation.py

Spectrum sensing interface

● class SpectrumSensorProgram
– frequency sweep, start time, duration
– SD card slot to write results to

● SpectrumSensor.program()
– send task to the node

● SpectrumSensor.is_complete()
– check if task complete

● SpectrumSensor.retrieve()
– retrieve results from the SD card

● class SpectrumSensorResult
– collection of sweeps

Demo

06-programmed-tasks.py

Overview

● Overview of the VESNA platform
– hardware

– software stack

● Overview of Log-a-tec testbed
– how remote access works

● Building a basic experiment with Python
– required software

– step-by-step demonstration

● Conclusion and further references

Controlling the SNE-ISMTV

register-level access

spectrum sensing/
signal generation

C API

spectrum sensing/
signal generation
REST interface

CREW CDF

lo
ca

l
re

m
ot

e

h
ig

he
r

co
m

pl
e

xi
ty

 /
lo

w
e

r
re

sp
o

ns
e

 ti
m

e

Developing VESNA applications

● Setup manual for Linux based development
– http://sensorlab.github.com/vesna-manual

● Spectrum sensing and signal generation C API

– see CREW deliverable 3.2
● Overview

– add code to Logatec application
– review & testing by JSI
– over-the-air upload to nodes
– communicate with the application over REST

Register level access

● See reference documentation for SNE-ISMTV
receiver, transceiver ICs
– TDA18219, CC1101, CC2500 datasheets

– (SNE-ISMTV datasheet - WIP)

● read_reg(), write_reg(), interrupts
● Usually extensive testing required

– tuners have bugs, unexpected features

– for new RF front-end configurations
calibration required if accurate RSSI
measurements / TX power levels are desired

Questions?

tomaz.solc@ijs.si

http://sensorlab.ijs.si
http://github.com/sensorlab

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39
	Slide 40
	Slide 41
	Slide 42
	Slide 43
	Slide 44
	Slide 45
	Slide 46
	Slide 47
	Slide 48
	Slide 49
	Slide 50
	Slide 51
	Slide 52
	Slide 53
	Slide 54
	Slide 55
	Slide 56
	Slide 57
	Slide 58
	Slide 59
	Slide 60
	Slide 61
	Slide 62
	Slide 63
	Slide 64
	Slide 65
	Slide 66
	Slide 67
	Slide 68

