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Overview

● Overview of the VESNA platform
– hardware

– software stack

● Overview of Log-a-tec testbed
– how remote access works

● Building a basic experiment with Python
– required software

– step-by-step demonstration

● Conclusion and further references



  

VESNA

● “VErsatile platform for Sensor Network Applications”



  

VESNA

SNC
Sensor Node Core

SNR 
Sensor Node Radio

SNE
Sensor Node Expansion

● “VErsatile platform for Sensor Network Applications”



  

Sensor Node Core

● STM ARMv7 Cortex-M3
– up to 72 MHz clock, 1 MB Flash, 96 kB RAM

● 3 x 1 MS/s ADC, w/ instrumental amplifier
● Non-volatile storage

– 128 kB fast MRAM

– SD or microSD

● Multi-purpose power supply
– rechargeable, non-rechargeable battery, solar cell, 

external power

● USB 2.0, RS-232, I2C, SPI, UART, ...



  

Sensor Node Radio

● Connect nodes into a wireless mesh network
– 868 MHz European SRD band

– 2.4 GHz ISM band

● IEEE 802.15.4
– Atmel proprietary 

BitCloud / ZigBit /
SerialNet

– 6lowPAN

● Sensor node control
and management



  

Sensor Node Expansion

● SNE connector allows
for application specific
expansions
– Data acquisition,

– sensor interfaces,

– wired/wireless
communications,

– extra power supply,

– etc.



  

SNE-ISMTV

● Designed for spectrum sensing and cognitive 
radio applications

● Collection of radio-frequency hardware 
– UHF/VHF wide-band energy detection receiver

– reconfigurable narrow-band sub-1 GHz transceiver

– reconfigurable narrow-band 2.4 GHz transceiver

– additional IEEE 802.15.4 radio (868 MHz)

● Independent of the testbed management 
network



  

SNE-ISMTV-UHF



  

SNE-ISMTV-UHF

● Based on NXP TDA18219 silicon tuner

● Frequency range 470 - 862 MHz
● Bandwidth 1.7 MHz, 8 MHz
● Power detector uncertainty 1.8 dBm
● Detector read-out time 50 ms / 1 μs
● Average noise level -169 dBm (@ 1Hz)
● Dynamic range 60 dBm



  

Texas Instruments CCxxxx



  

SNE-ISMTV-TI868, TI2400

● Integrated tuner, modem, 
packet handling hardware

● Reception and transmission
– FSK, MSK, ASK modulations

– packet-based or continuous

● Energy detection measurements
● Test signal generation, interferer simulation
● Experiments with packet-based protocols



  

SNE-ISMTV-TI868

● Based on TI CC1101 sub-1 GHz transceiver

● Frequency range 780 - 871 MHz
– 868 MHz European SRD band

– upper channels of the UHF band

● Bandwidth 50, 100, 200 kHz
● Power detector resolution 0.5 dBm
● Average noise level -150 dBm (@ 1Hz)
● Maximum TX power 12 dBm



  

SNE-ISMTV-TI24

● Based on TI CC2500 2.4 GHz transceiver

● Frequency range 2.40 – 2.48 GHz
– 2.4 GHz ISM band

● Bandwidth 200, 400 kHz
● Power detector resolution 0.5 dBm
● Average noise level -159 dBm (@ 1Hz)
● Maximum TX power 0 dBm



  

SNE-ISMTV

● Designed for spectrum sensing and cognitive 
radio applications

● Collection of radio-frequency hardware 
– UHF/VHF wide-band energy detection receiver

– reconfigurable narrow-band sub-1 GHz transceiver

– reconfigurable narrow-band 2.4 GHz transceiver

– additional IEEE 802.15.4 radio (868 MHz)

● Independent of the testbed management 
network



  

VESNA software stack

libopencm3
STM32 
FWLib

Contiki OS

VESNA drivers

Application



  

VESNA software stack

libopencm3
STM32 
FWLib

Contiki OS

VESNA drivers

Application
● Hardware register 

definitions
● Abstraction of 

MCU peripherals
● libopencm3

– LGPL

● STM32 FWLib
– open source, 

proprietary license



  

VESNA software stack

Contiki OS

VESNA drivers

Application
● High level abstraction
● Standard C library 

support
– #include <stdio.h>

● Device drivers
– storage, sensors, 

radio, SNE support, ...

● Networking
● Convenience functions

libopencm3
STM32 
FWLib



  

VESNA software stack

Contiki OS

VESNA drivers

Application
● Embedded 

operating system
● Cooperative 

multi-tasking
● Networking

– IPv4, IPv6, 
6lowPAN, RPL, CoAP

● Permissive 
BSD-style license

libopencm3
STM32 
FWLib



  

VESNA software stack

Contiki OS

VESNA drivers

Application
● Application can

– Run on Contiki OS

– Run without OS using 
VESNA drivers

– Run without OS using 
libopencm3

● Depends on 
licensing, complexity

libopencm3
STM32 
FWLib



  

Overview

● Overview of the VESNA platform
– hardware

– software stack

● Overview of Log-a-tec testbed
– how remote access works

● Building a basic experiment with Python
– required software

– step-by-step demonstration

● Conclusion and further references



  

Log-a-tec testbed



  

Log-a-tec testbed

● 51 VESNA wireless sensor nodes
– mostly mounted on street lights, some on rooftops

– 32 x SNE-ISMTV-TI24

– 11 x SNE-ISMTV-TI868

– 5 x SNE-ISMTV-UHF w/ low-gain antenna

– 3 x SNE-ISMTV-UHF w/ high-gain antenna

● Two clusters in municipality of Logatec
– industrial zone (23 nodes)

– city center (28 nodes)



  



  



  



  



  



  

100 m



  

200 m



  
1000 m

local DVB-T transmitter
P = 200 W, fc = 562 MHz, BW = 8 MHz



  



  

Log-a-tec VESNA application

Contiki OS

VESNA drivers

Application
● REST interface for 

remote experiments
● Native code for 

local experiments
● Test bed 

Management
– OTA reprogramming

– monitoringlibopencm3
STM32 
FWLib



  

Controlling the SNE-ISMTV

register-level access

spectrum sensing/
signal generation 

C API

spectrum sensing/
signal generation 
REST interface
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Controlling the SNE-ISMTV

● Spectrum sensing setup
● Meta-data in XML

– hardware setup,
– frequency band,
– date, author, ...

● Data in CSV
or MatLab format
– spectrum sensing results
– (time, frequency, power)register-level access

spectrum sensing/
signal generation 

C API

spectrum sensing/
signal generation 
REST interface

CREW CDF
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Controlling the SNE-ISMTV

● High-level abstraction 
of hardware

● Spectrum sensing 
– sense band B at

time T using device D 
and method M

● Signal generation
– transmit at frequency 

F and power P
register-level access

spectrum sensing/
signal generation 

C API

spectrum sensing/
signal generation 
REST interface

CREW CDF
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Controlling the SNE-ISMTV

● Direct access to the 
API from native code

● Removes network 
round-trips
– lower latency

– data processing on 
the sensor node

– no interference on 
868 MHz band

register-level access

spectrum sensing/
signal generation 

C API

spectrum sensing/
signal generation 
REST interface

CREW CDF
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Controlling the SNE-ISMTV

● Directly programming 
radio hardware
– CC1101, CC2500,

TDA18219

● Exploit full 
capabilities of 
available hardware

● Time consuming 
testing required

register-level access

spectrum sensing/
signal generation 

C API

spectrum sensing/
signal generation 
REST interface

CREW CDF
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REST interface

● Each node has a 16-bit network address
● Nodes act as a servers on the network

– expose various resources

– resources addressed by name
e.g. “sensing/deviceStatus”

– GET and/or POST method

● Experimenter's computer acts as a client
– issues requests to nodes and receives responses

– only one request at a time



  

REST interface

● GET method
– retrieve data from the node 

(e.g. measurement results, status messages, ...)

– doesn't change state

GET sensing/slotInformation?id=1

method argumentsresource name



  

REST interface

● POST method
– send data to the node

(e.g. configuration parameters, trigger events, ...)

– changes state

POST generator/program?    

in 1 sec for 10 sec with dev 0 
conf 0 channel  0 power 0

method argumentsresource name

data



  

Network overview

VESNA
node

VESNA
coordinator user

HTTP
server

868 MHz
wireless internet internet

you are here



  

Log-a-tec web portal

VESNA
node

VESNA
coordinator user

HTTP
server

868 MHz
wireless internet internet

you are here

● Web portal
– map with locations of VESNA nodes

– manually issue GET and POST requests

– simulations with GRASS-RaPlaT

● HTTP API end-point
– programmatic access to VESNA REST interface



  

Accessing the coordinator

VESNA
node

VESNA
coordinator user

HTTP
server

868 MHz
wireless internet internet

● HTTP server forwards GET & POST requests 
to coordinator

● Simple HTTP-like (ALH) protocol 
over SSL tunnel

● One coordinator per cluster
– coordinator identified by cluster ID



  



  

Python libraries

VESNA
node

VESNA
coordinator user

HTTP
server

868 MHz
wireless internet internet

● https://crn.log-a-tec.eu/communicator?
cluster=10001&method=get&resource=hello

● We provide a Python module to communicate 
with VESNA nodes



  

Overview

● Overview of the VESNA platform
– hardware

– software stack

● Overview of Log-a-tec testbed
– how remote access works

● Building a basic experiment with Python
– required software

– step-by-step demonstration

● Conclusion and further references



  

Installing Python libraries

● set $PYTHONPATH
– add to ~/.bashrc:
export PYTHONPATH=”$HOME/local/lib/python”

● install vesna-alh-tools
– https://github.com/sensorlab/vesna-alh-tools

– $ python setup.py install --home=~/local

● install vesna-spectrum-sensor
– https://github.com/sensorlab/vesna-spectrum-sensor

– $ cd python

– $ python setup.py install --home=~/local



  

Installing Python libraries

● set authentication details
– create ~/.alhrc with:

Host crn.log-a-tec.eu
User <username>
Password <password>



  

Demo

VESNA
node

VESNA
coordinator user

HTTP
server

868 MHz
wireless internet internet

01-hello.py



  

Coordinator proxy

VESNA
node

VESNA
coordinator user

HTTP
server

868 MHz
wireless internet internet

● Coordinator can proxy GET & POST requests 
to nodes over the management network

● GET nodes?19/sensor/mcuTemp
issues
GET sensor/mcuTemp
to node 19



  

VESNA networking

VESNA
node

VESNA
coordinator user

HTTP
server

868 MHz
wireless internet internet

● management mesh network
● 868 MHz (European SRD band)
● typical bulk transfers ~ 300 bytes/s
● typical round-trip times ~ 600 ms
● HTTP-like protocol over IEEE 802.15.4 mesh



  

Demo

VESNA
node

VESNA
coordinator user

HTTP
server

868 MHz
wireless internet internet

02-proxy.py



  

Demo

VESNA
node

VESNA
coordinator user

HTTP
server

868 MHz
wireless internet internet

manage.py interactive session



  

Spectrum sensing interface

● Hardware abstraction
– each node has one or more physical devices

– each device has one or more configurations

● Device configuration determines
– usable frequency range

– channel number→central frequency relation

– settle time required after channel change

– channel bandwidth

– averaging / post processing parameters (if any)



  

Demo

03-spectrum-sensing-devices.py



  

Spectrum sensing interface

● class SpectrumSensor
– wrapper around ALHProxy for convenience methods

● class ConfigList
– describes possible hardware device configurations

● class SweepConfig
– describes frequency sweep

– hardware configuration, start, stop, step frequency

● class Sweep
– results of spectrum sensing sweep 

(timestamp, frequency, power)



  

Demo

04-single-sweeps.py



  

Signal generation interface

● Hardware abstraction
– each node has one or more physical devices

– each device has one or more configurations

● Device configuration determines
– usable frequency, power range

– channel number→central frequency relation

– transmitted waveform



  

Signal generation interface

● class SignalGenerator
– wrapper around ALHProxy for convenience methods

● class ConfigList
– describes possible hardware device configurations

● class TXConfig
– describes signal transmission

– hardware configuration, frequency, power

● class SignalGeneratorProgram
– Transmission configuration, start time, duration



  

Demo

05-signal-generation.py



  

Spectrum sensing interface

● class SpectrumSensorProgram
– frequency sweep, start time, duration
– SD card slot to write results to

● SpectrumSensor.program()
– send task to the node

● SpectrumSensor.is_complete()
– check if task complete

● SpectrumSensor.retrieve()
– retrieve results from the SD card

● class SpectrumSensorResult
– collection of sweeps



  

Demo

06-programmed-tasks.py



  

Overview

● Overview of the VESNA platform
– hardware
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● Overview of Log-a-tec testbed
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Controlling the SNE-ISMTV

register-level access

spectrum sensing/
signal generation 

C API

spectrum sensing/
signal generation 
REST interface

CREW CDF
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Developing VESNA applications

● Setup manual for Linux based development
– http://sensorlab.github.com/vesna-manual

● Spectrum sensing and signal generation C API

– see CREW deliverable 3.2
● Overview

– add code to Logatec application
– review & testing by JSI
– over-the-air upload to nodes 
– communicate with the application over REST



  

Register level access

● See reference documentation for SNE-ISMTV 
receiver, transceiver ICs
– TDA18219, CC1101, CC2500 datasheets

– (SNE-ISMTV datasheet - WIP)

● read_reg(), write_reg(), interrupts
● Usually extensive testing required

– tuners have bugs, unexpected features

– for new RF front-end configurations 
calibration required if accurate RSSI 
measurements / TX power levels are desired



  

Questions?

tomaz.solc@ijs.si

http://sensorlab.ijs.si
http://github.com/sensorlab
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